Thesis Open Access
Eyob Gedlie
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<controlfield tag="005">20250110092040.0</controlfield>
<controlfield tag="001">5730</controlfield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="s">647925</subfield>
<subfield code="z">md5:d45cbd5fd89e1d88df48cadeabb670f7</subfield>
<subfield code="u">https://zenodo.org/record/5730/files/f1042664640.pdf</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2018-12-31</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-aau</subfield>
<subfield code="p">user-zenodo</subfield>
<subfield code="o">oai:zenodo.org:5730</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Eyob Gedlie</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Investigation of Soft Neural Network Algorithm Implement to Analog Electronics Devices</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-aau</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-zenodo</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
<subfield code="a">Creative Commons Attribution</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>The implementation of neural systems is presented in this paper. The thesis focuses on<br>
implementations where the algorithms and their physical support are tightly coupled. This thesis<br>
describes a neural network intelligent, application, soft-algorithm to implement to hardware<br>
electronics device. With the emerging of Integrated Circuit, any design with large number of<br>
electronic components can be squeezed into a tiny chip area with minimum power requirements,<br>
which leads to integration of innumerable applications so as to design any electronic consumer<br>
product initiated in the era of digital convergence. One has many choices for selecting either of<br>
these reconfigurable techniques based on Speed, Gate Density, Development, Prototyping,<br>
simulation time and cost. This thesis describes the implementation in hardware of an Artificial<br>
Neural Network with an Electronic circuit made up of Op-amps. The implementation of a Neural<br>
Network in hardware can be desired to benefit from its distributed processing capacity or to avoid<br>
using a personal computer attached to each implementation. The hardware implementation is based<br>
in a Feed Forward Neural Network, with a hyperbolic tangent as activation function, with floating<br>
point notation of single precision. The device used was an electronic circuit made with Op-amps<br>
The Proteus Software version 8.0 was used to validate the implementation results of the hardware<br>
circuit. The results show that the implementation does not introduce a noticeable loss of precision<br>
but is slower than the software implementation running in a PC.</p></subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="n">doi</subfield>
<subfield code="i">isVersionOf</subfield>
<subfield code="a">10.20372/nadre:5729</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.20372/nadre:5730</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">thesis</subfield>
</datafield>
</record>
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |