Thesis Open Access
Eyob Gedlie
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.20372/nadre:5730</identifier> <creators> <creator> <creatorName>Eyob Gedlie</creatorName> </creator> </creators> <titles> <title>Investigation of Soft Neural Network Algorithm Implement to Analog Electronics Devices</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <dates> <date dateType="Issued">2018-12-31</date> </dates> <resourceType resourceTypeGeneral="Text">Thesis</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/5730</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:5729</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aau</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The implementation of neural systems is presented in this paper. The thesis focuses on<br> implementations where the algorithms and their physical support are tightly coupled. This thesis<br> describes a neural network intelligent, application, soft-algorithm to implement to hardware<br> electronics device. With the emerging of Integrated Circuit, any design with large number of<br> electronic components can be squeezed into a tiny chip area with minimum power requirements,<br> which leads to integration of innumerable applications so as to design any electronic consumer<br> product initiated in the era of digital convergence. One has many choices for selecting either of<br> these reconfigurable techniques based on Speed, Gate Density, Development, Prototyping,<br> simulation time and cost. This thesis describes the implementation in hardware of an Artificial<br> Neural Network with an Electronic circuit made up of Op-amps. The implementation of a Neural<br> Network in hardware can be desired to benefit from its distributed processing capacity or to avoid<br> using a personal computer attached to each implementation. The hardware implementation is based<br> in a Feed Forward Neural Network, with a hyperbolic tangent as activation function, with floating<br> point notation of single precision. The device used was an electronic circuit made with Op-amps<br> The Proteus Software version 8.0 was used to validate the implementation results of the hardware<br> circuit. The results show that the implementation does not introduce a noticeable loss of precision<br> but is slower than the software implementation running in a PC.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |