Thesis Open Access

Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network

digis weldu


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20240919140110.0</controlfield>
  <controlfield tag="001">1973</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2104716</subfield>
    <subfield code="z">md5:badcc79908f0af8a91f6257359d79cff</subfield>
    <subfield code="u">https://zenodo.org/record/1973/files/f1046774080.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-aau</subfield>
    <subfield code="p">user-zenodo</subfield>
    <subfield code="o">oai:zenodo.org:1973</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">digis weldu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-aau</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-zenodo</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The advent of data-intensive services needs quality Internet services. This in turn, makes Quality&lt;br&gt;
of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom&lt;br&gt;
uses network Quality of Service (QoS) monitoring data obtained from Network Management&lt;br&gt;
Systems (NMS) tools to comprehend its network performances. However, as QoS measurement&lt;br&gt;
refers to network performances, this method does not generally give QoE data as perceived&lt;br&gt;
by the user. Therefore, QoE estimation models are proposed as solutions in the literature,&lt;br&gt;
recently.&lt;br&gt;
This study focuses on developing QoE estimation models using QoS features of round-trip time&lt;br&gt;
(RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting&lt;br&gt;
QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal&lt;br&gt;
Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations&lt;br&gt;
techniques such as data cleaning and dataset imbalance corrections have been applied to the&lt;br&gt;
collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest&lt;br&gt;
Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel&lt;br&gt;
problems. After training these models developed, they are evaluated using commonly used&lt;br&gt;
performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating&lt;br&gt;
Characteristics (ROC).&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.20372/nadre:1972</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre:1973</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as