Thesis Open Access
digis weldu
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<controlfield tag="005">20240919140110.0</controlfield>
<controlfield tag="001">1973</controlfield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="s">2104716</subfield>
<subfield code="z">md5:badcc79908f0af8a91f6257359d79cff</subfield>
<subfield code="u">https://zenodo.org/record/1973/files/f1046774080.pdf</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2020-02-01</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-aau</subfield>
<subfield code="p">user-zenodo</subfield>
<subfield code="o">oai:zenodo.org:1973</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">digis weldu</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-aau</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-zenodo</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
<subfield code="a">Creative Commons Attribution</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>The advent of data-intensive services needs quality Internet services. This in turn, makes Quality<br>
of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom<br>
uses network Quality of Service (QoS) monitoring data obtained from Network Management<br>
Systems (NMS) tools to comprehend its network performances. However, as QoS measurement<br>
refers to network performances, this method does not generally give QoE data as perceived<br>
by the user. Therefore, QoE estimation models are proposed as solutions in the literature,<br>
recently.<br>
This study focuses on developing QoE estimation models using QoS features of round-trip time<br>
(RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting<br>
QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal<br>
Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations<br>
techniques such as data cleaning and dataset imbalance corrections have been applied to the<br>
collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest<br>
Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel<br>
problems. After training these models developed, they are evaluated using commonly used<br>
performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating<br>
Characteristics (ROC).</p></subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="n">doi</subfield>
<subfield code="i">isVersionOf</subfield>
<subfield code="a">10.20372/nadre:1972</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.20372/nadre:1973</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">thesis</subfield>
</datafield>
</record>
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |