Thesis Open Access
digis weldu
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20240919140110.0</controlfield> <controlfield tag="001">1973</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2104716</subfield> <subfield code="z">md5:badcc79908f0af8a91f6257359d79cff</subfield> <subfield code="u">https://zenodo.org/record/1973/files/f1046774080.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-02-01</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">user-aau</subfield> <subfield code="p">user-zenodo</subfield> <subfield code="o">oai:zenodo.org:1973</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">digis weldu</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-aau</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-zenodo</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>The advent of data-intensive services needs quality Internet services. This in turn, makes Quality<br> of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom<br> uses network Quality of Service (QoS) monitoring data obtained from Network Management<br> Systems (NMS) tools to comprehend its network performances. However, as QoS measurement<br> refers to network performances, this method does not generally give QoE data as perceived<br> by the user. Therefore, QoE estimation models are proposed as solutions in the literature,<br> recently.<br> This study focuses on developing QoE estimation models using QoS features of round-trip time<br> (RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting<br> QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal<br> Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations<br> techniques such as data cleaning and dataset imbalance corrections have been applied to the<br> collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest<br> Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel<br> problems. After training these models developed, they are evaluated using commonly used<br> performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating<br> Characteristics (ROC).</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.20372/nadre:1972</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.20372/nadre:1973</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">thesis</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |