Thesis Open Access
digis weldu
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>digis weldu</dc:creator> <dc:date>2020-02-01</dc:date> <dc:description>The advent of data-intensive services needs quality Internet services. This in turn, makes Quality of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom uses network Quality of Service (QoS) monitoring data obtained from Network Management Systems (NMS) tools to comprehend its network performances. However, as QoS measurement refers to network performances, this method does not generally give QoE data as perceived by the user. Therefore, QoE estimation models are proposed as solutions in the literature, recently. This study focuses on developing QoE estimation models using QoS features of round-trip time (RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations techniques such as data cleaning and dataset imbalance corrections have been applied to the collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel problems. After training these models developed, they are evaluated using commonly used performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating Characteristics (ROC).</dc:description> <dc:identifier>https://zenodo.org/record/1973</dc:identifier> <dc:identifier>10.20372/nadre:1973</dc:identifier> <dc:identifier>oai:zenodo.org:1973</dc:identifier> <dc:relation>doi:10.20372/nadre:1972</dc:relation> <dc:relation>url:https://nadre.ethernet.edu.et/communities/aau</dc:relation> <dc:relation>url:https://nadre.ethernet.edu.et/communities/zenodo</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:title>Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</dc:title> <dc:type>info:eu-repo/semantics/doctoralThesis</dc:type> <dc:type>publication-thesis</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |