Thesis Open Access
digis weldu
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.20372/nadre:1973</identifier>
<creators>
<creator>
<creatorName>digis weldu</creatorName>
</creator>
</creators>
<titles>
<title>Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</title>
</titles>
<publisher>Zenodo</publisher>
<publicationYear>2020</publicationYear>
<dates>
<date dateType="Issued">2020-02-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Thesis</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/1973</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:1972</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aau</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>The advent of data-intensive services needs quality Internet services. This in turn, makes Quality<br>
of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom<br>
uses network Quality of Service (QoS) monitoring data obtained from Network Management<br>
Systems (NMS) tools to comprehend its network performances. However, as QoS measurement<br>
refers to network performances, this method does not generally give QoE data as perceived<br>
by the user. Therefore, QoE estimation models are proposed as solutions in the literature,<br>
recently.<br>
This study focuses on developing QoE estimation models using QoS features of round-trip time<br>
(RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting<br>
QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal<br>
Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations<br>
techniques such as data cleaning and dataset imbalance corrections have been applied to the<br>
collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest<br>
Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel<br>
problems. After training these models developed, they are evaluated using commonly used<br>
performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating<br>
Characteristics (ROC).</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |