Thesis Open Access
digis weldu
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.20372/nadre:1973</identifier> <creators> <creator> <creatorName>digis weldu</creatorName> </creator> </creators> <titles> <title>Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-02-01</date> </dates> <resourceType resourceTypeGeneral="Text">Thesis</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/1973</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:1972</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aau</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The advent of data-intensive services needs quality Internet services. This in turn, makes Quality<br> of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom<br> uses network Quality of Service (QoS) monitoring data obtained from Network Management<br> Systems (NMS) tools to comprehend its network performances. However, as QoS measurement<br> refers to network performances, this method does not generally give QoE data as perceived<br> by the user. Therefore, QoE estimation models are proposed as solutions in the literature,<br> recently.<br> This study focuses on developing QoE estimation models using QoS features of round-trip time<br> (RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting<br> QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal<br> Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations<br> techniques such as data cleaning and dataset imbalance corrections have been applied to the<br> collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest<br> Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel<br> problems. After training these models developed, they are evaluated using commonly used<br> performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating<br> Characteristics (ROC).</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |