Thesis Open Access

Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network

digis weldu


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.20372/nadre:1973">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.20372/nadre:1973</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.20372/nadre:1973"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>digis weldu</foaf:name>
      </rdf:Description>
    </dct:creator>
    <dct:title>Machine Learning Based QoE Estimation Model for Video Streaming over UMTS Network</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-02-01</dct:issued>
    <owl:sameAs rdf:resource="https://nadre.ethernet.edu.et/record/1973"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://nadre.ethernet.edu.et/record/1973</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.20372/nadre:1972"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/aau"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/zenodo"/>
    <dct:description>&lt;p&gt;The advent of data-intensive services needs quality Internet services. This in turn, makes Quality&lt;br&gt; of Experience (QoE) gain prominent recognition in the telecommunications industry. Ethio telecom&lt;br&gt; uses network Quality of Service (QoS) monitoring data obtained from Network Management&lt;br&gt; Systems (NMS) tools to comprehend its network performances. However, as QoS measurement&lt;br&gt; refers to network performances, this method does not generally give QoE data as perceived&lt;br&gt; by the user. Therefore, QoE estimation models are proposed as solutions in the literature,&lt;br&gt; recently.&lt;br&gt; This study focuses on developing QoE estimation models using QoS features of round-trip time&lt;br&gt; (RTT), jitter, loss rate (LR) and throughput, and QoE scores collected using Application for prediCting&lt;br&gt; QUality of experience at Interne Access (ACQUA)-based crowdsourcing in Universal&lt;br&gt; Mobile Telecommunication Systems (UMTS) networks in a real-time basis. Data preparations&lt;br&gt; techniques such as data cleaning and dataset imbalance corrections have been applied to the&lt;br&gt; collected datasets. Machine Learning (ML) algorithms of Articial Neural Network (ANN), KNearest&lt;br&gt; Neighbor (KNN) and Random Forest (RF) are selected based on their suitability for multilabel&lt;br&gt; problems. After training these models developed, they are evaluated using commonly used&lt;br&gt; performance metrics such as accuracy, Root Mean Square Error (RMSE) and Receiver Operating&lt;br&gt; Characteristics (ROC).&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="http://www.opendefinition.org/licenses/cc-by">
            <rdfs:label>Creative Commons Attribution</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:1973"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:1973"/>
        <dcat:byteSize>2104716</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://nadre.ethernet.edu.et/record/1973/files/f1046774080.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as