Thesis Open Access
HABTU REDA
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<controlfield tag="005">20241203133447.0</controlfield>
<controlfield tag="001">4654</controlfield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="s">647925</subfield>
<subfield code="z">md5:d45cbd5fd89e1d88df48cadeabb670f7</subfield>
<subfield code="u">https://zenodo.org/record/4654/files/f1042664640.pdf</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2021-10-01</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-aastu</subfield>
<subfield code="p">user-zenodo</subfield>
<subfield code="o">oai:zenodo.org:4654</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">HABTU REDA</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-aastu</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-zenodo</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
<subfield code="a">Creative Commons Attribution</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>Estimating public bus arrival times and delivering accurate arrival time information to<br>
passengers are critical for making public transportation more user-friendly and thereby<br>
increasing its competitiveness among various forms of transportation. However public bus<br>
arrival time prediction remains major bottlenecks With traffic heterogeneity in composition and<br>
diversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,<br>
predicting the arrival time of public buses at stations is a severe concern.. The main objective of<br>
this study is to apply machine learning algorithms to predict bus arrival time. The data was<br>
collected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,<br>
Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are<br>
applied to build the models and to compare and choose the best model to predict the bus arrival<br>
time. After selecting the features and algorithms, different data preprocessing tasks like checking<br>
outliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are<br>
used to train and build the model. The prepared dataset is partitioned into 90% training and 10%<br>
testing set. Beginning Date, Beginning Time, End Date, Time Range, Mileage, Duration, Initial<br>
latitude, Initial longitude, Final latitude, Final longitude, and End Time were used as input<br>
features for developing the model. Based on the experiment result the Random Forest algorithm<br>
achieved a better performance with R-squared score of 0.994, MAE of 0.812, RMSE of 3.780<br>
and MSE of 14.28.</p></subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="n">doi</subfield>
<subfield code="i">isVersionOf</subfield>
<subfield code="a">10.20372/nadre:4653</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.20372/nadre:4654</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">thesis</subfield>
</datafield>
</record>
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |