Thesis Open Access
HABTU REDA
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20241203133447.0</controlfield> <controlfield tag="001">4654</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">647925</subfield> <subfield code="z">md5:d45cbd5fd89e1d88df48cadeabb670f7</subfield> <subfield code="u">https://zenodo.org/record/4654/files/f1042664640.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-10-01</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">user-aastu</subfield> <subfield code="p">user-zenodo</subfield> <subfield code="o">oai:zenodo.org:4654</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">HABTU REDA</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-aastu</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-zenodo</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Estimating public bus arrival times and delivering accurate arrival time information to<br> passengers are critical for making public transportation more user-friendly and thereby<br> increasing its competitiveness among various forms of transportation. However public bus<br> arrival time prediction remains major bottlenecks With traffic heterogeneity in composition and<br> diversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,<br> predicting the arrival time of public buses at stations is a severe concern.. The main objective of<br> this study is to apply machine learning algorithms to predict bus arrival time. The data was<br> collected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,<br> Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are<br> applied to build the models and to compare and choose the best model to predict the bus arrival<br> time. After selecting the features and algorithms, different data preprocessing tasks like checking<br> outliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are<br> used to train and build the model. The prepared dataset is partitioned into 90% training and 10%<br> testing set. Beginning Date, Beginning Time, End Date, Time Range, Mileage, Duration, Initial<br> latitude, Initial longitude, Final latitude, Final longitude, and End Time were used as input<br> features for developing the model. Based on the experiment result the Random Forest algorithm<br> achieved a better performance with R-squared score of 0.994, MAE of 0.812, RMSE of 3.780<br> and MSE of 14.28.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.20372/nadre:4653</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.20372/nadre:4654</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">thesis</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |