Thesis Open Access

PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA

HABTU REDA


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.20372/nadre:4654">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.20372/nadre:4654</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.20372/nadre:4654"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>HABTU REDA</foaf:name>
      </rdf:Description>
    </dct:creator>
    <dct:title>PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-10-01</dct:issued>
    <owl:sameAs rdf:resource="https://nadre.ethernet.edu.et/record/4654"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://nadre.ethernet.edu.et/record/4654</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.20372/nadre:4653"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/aastu"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/zenodo"/>
    <dct:description>&lt;p&gt;Estimating public bus arrival times and delivering accurate arrival time information to&lt;br&gt; passengers are critical for making public transportation more user-friendly and thereby&lt;br&gt; increasing its competitiveness among various forms of transportation. However public bus&lt;br&gt; arrival time prediction remains major bottlenecks With traffic heterogeneity in composition and&lt;br&gt; diversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,&lt;br&gt; predicting the arrival time of public buses at stations is a severe concern.. The main objective of&lt;br&gt; this study is to apply machine learning algorithms to predict bus arrival time. The data was&lt;br&gt; collected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,&lt;br&gt; Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are&lt;br&gt; applied to build the models and to compare and choose the best model to predict the bus arrival&lt;br&gt; time. After selecting the features and algorithms, different data preprocessing tasks like checking&lt;br&gt; outliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are&lt;br&gt; used to train and build the model. The prepared dataset is partitioned into 90% training and 10%&lt;br&gt; testing set. Beginning Date, Beginning Time, End Date, Time Range, Mileage, Duration, Initial&lt;br&gt; latitude, Initial longitude, Final latitude, Final longitude, and End Time were used as input&lt;br&gt; features for developing the model. Based on the experiment result the Random Forest algorithm&lt;br&gt; achieved a better performance with R-squared score of 0.994, MAE of 0.812, RMSE of 3.780&lt;br&gt; and MSE of 14.28.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="http://www.opendefinition.org/licenses/cc-by">
            <rdfs:label>Creative Commons Attribution</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:4654"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:4654"/>
        <dcat:byteSize>647925</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://nadre.ethernet.edu.et/record/4654/files/f1042664640.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as