Thesis Open Access
HABTU REDA
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.20372/nadre:4654</identifier> <creators> <creator> <creatorName>HABTU REDA</creatorName> </creator> </creators> <titles> <title>PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-10-01</date> </dates> <resourceType resourceTypeGeneral="Text">Thesis</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/4654</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:4653</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aastu</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Estimating public bus arrival times and delivering accurate arrival time information to<br> passengers are critical for making public transportation more user-friendly and thereby<br> increasing its competitiveness among various forms of transportation. However public bus<br> arrival time prediction remains major bottlenecks With traffic heterogeneity in composition and<br> diversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,<br> predicting the arrival time of public buses at stations is a severe concern.. The main objective of<br> this study is to apply machine learning algorithms to predict bus arrival time. The data was<br> collected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,<br> Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are<br> applied to build the models and to compare and choose the best model to predict the bus arrival<br> time. After selecting the features and algorithms, different data preprocessing tasks like checking<br> outliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are<br> used to train and build the model. The prepared dataset is partitioned into 90% training and 10%<br> testing set. Beginning Date, Beginning Time, End Date, Time Range, Mileage, Duration, Initial<br> latitude, Initial longitude, Final latitude, Final longitude, and End Time were used as input<br> features for developing the model. Based on the experiment result the Random Forest algorithm<br> achieved a better performance with R-squared score of 0.994, MAE of 0.812, RMSE of 3.780<br> and MSE of 14.28.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |