Thesis Open Access
HABTU REDA
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.20372/nadre:4654</identifier>
<creators>
<creator>
<creatorName>HABTU REDA</creatorName>
</creator>
</creators>
<titles>
<title>PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA</title>
</titles>
<publisher>Zenodo</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-10-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Thesis</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/4654</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:4653</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aastu</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Estimating public bus arrival times and delivering accurate arrival time information to<br>
passengers are critical for making public transportation more user-friendly and thereby<br>
increasing its competitiveness among various forms of transportation. However public bus<br>
arrival time prediction remains major bottlenecks With traffic heterogeneity in composition and<br>
diversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,<br>
predicting the arrival time of public buses at stations is a severe concern.. The main objective of<br>
this study is to apply machine learning algorithms to predict bus arrival time. The data was<br>
collected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,<br>
Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are<br>
applied to build the models and to compare and choose the best model to predict the bus arrival<br>
time. After selecting the features and algorithms, different data preprocessing tasks like checking<br>
outliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are<br>
used to train and build the model. The prepared dataset is partitioned into 90% training and 10%<br>
testing set. Beginning Date, Beginning Time, End Date, Time Range, Mileage, Duration, Initial<br>
latitude, Initial longitude, Final latitude, Final longitude, and End Time were used as input<br>
features for developing the model. Based on the experiment result the Random Forest algorithm<br>
achieved a better performance with R-squared score of 0.994, MAE of 0.812, RMSE of 3.780<br>
and MSE of 14.28.</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |