Thesis Open Access
BY LEMESSA REGASSA TOLERA
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20250730062921.0</controlfield> <controlfield tag="001">14175</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2074366</subfield> <subfield code="z">md5:072e3c7289164239e2d01c89ed5f4f3b</subfield> <subfield code="u">https://zenodo.org/record/14175/files/LEMESSA REGASSA FINAL THESIS.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2025-07-05</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">user-20-25</subfield> <subfield code="o">oai:zenodo.org:14175</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">BY LEMESSA REGASSA TOLERA</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-20-25</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opensource.org/licenses/opengroup.php</subfield> <subfield code="a">Open Group Test Suite License</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>ADVISOR: BOKA KUMSA (PhD)</p> <p>In this thesis, we presented an analytical approximate solution to the Korteweg&ndash;de Vries<br> (KdV) equation, which has significant applications in various fields such as fluid dynamics,<br> plasma physics, and nonlinear optics. The kdv equation is solved using Adomian<br> Decomposition Method (ADM). The main focus of this study is to explore the analytical<br> approximation of the kdv equation using ADM, which provides rapidly converging series<br> solutions. The accuracy of this method is demonstrated, and it is shown to be robust for a<br> variety of boundary and initial conditions. The results suggest that ADM can serve as an<br> alternative to more complex numerical methods, particularly in cases where exact solutions<br> are unavailable or difficult to obtain. Furthermore, this thesis refines the ADM is efficient,<br> convenient, and applicable to a wide range of problems, offering an effective approach for<br> approximating the solution of the kdv equation.<br> Keywords: Systems of nonlinear partial differential equations, Adomian decomposition<br> method, Modified decomposition method and Korteweg de Vries equation (KdV) equation</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.20372/nadre:14174</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.20372/nadre:14175</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">thesis</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |