Thesis Open Access

ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD

BY LEMESSA REGASSA TOLERA


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20250730062921.0</controlfield>
  <controlfield tag="001">14175</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2074366</subfield>
    <subfield code="z">md5:072e3c7289164239e2d01c89ed5f4f3b</subfield>
    <subfield code="u">https://zenodo.org/record/14175/files/LEMESSA REGASSA FINAL THESIS.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2025-07-05</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-20-25</subfield>
    <subfield code="o">oai:zenodo.org:14175</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">BY LEMESSA REGASSA TOLERA</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-20-25</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opensource.org/licenses/opengroup.php</subfield>
    <subfield code="a">Open Group Test Suite License</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;ADVISOR: BOKA KUMSA (PhD)&lt;/p&gt;

&lt;p&gt;In this thesis, we presented an analytical approximate solution to the Korteweg&amp;ndash;de Vries&lt;br&gt;
(KdV) equation, which has significant applications in various fields such as fluid dynamics,&lt;br&gt;
plasma physics, and nonlinear optics. The kdv equation is solved using Adomian&lt;br&gt;
Decomposition Method (ADM). The main focus of this study is to explore the analytical&lt;br&gt;
approximation of the kdv equation using ADM, which provides rapidly converging series&lt;br&gt;
solutions. The accuracy of this method is demonstrated, and it is shown to be robust for a&lt;br&gt;
variety of boundary and initial conditions. The results suggest that ADM can serve as an&lt;br&gt;
alternative to more complex numerical methods, particularly in cases where exact solutions&lt;br&gt;
are unavailable or difficult to obtain. Furthermore, this thesis refines the ADM is efficient,&lt;br&gt;
convenient, and applicable to a wide range of problems, offering an effective approach for&lt;br&gt;
approximating the solution of the kdv equation.&lt;br&gt;
Keywords: Systems of nonlinear partial differential equations, Adomian decomposition&lt;br&gt;
method, Modified decomposition method and Korteweg de Vries equation (KdV) equation&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.20372/nadre:14174</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre:14175</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as