Thesis Open Access
BY LEMESSA REGASSA TOLERA
{ "files": [ { "links": { "self": "https://nadre.ethernet.edu.et/api/files/3586cd97-e5ea-4980-96e0-b2622f1cd458/LEMESSA%20REGASSA%20FINAL%20THESIS.pdf" }, "checksum": "md5:072e3c7289164239e2d01c89ed5f4f3b", "bucket": "3586cd97-e5ea-4980-96e0-b2622f1cd458", "key": "LEMESSA REGASSA FINAL THESIS.pdf", "type": "pdf", "size": 2074366 } ], "owners": [ 48 ], "doi": "10.20372/nadre:14175", "stats": {}, "links": { "doi": "https://doi.org/10.20372/nadre:14175", "conceptdoi": "https://doi.org/10.20372/nadre:14174", "bucket": "https://nadre.ethernet.edu.et/api/files/3586cd97-e5ea-4980-96e0-b2622f1cd458", "conceptbadge": "https://nadre.ethernet.edu.et/badge/doi/10.20372/nadre%3A14174.svg", "html": "https://nadre.ethernet.edu.et/record/14175", "latest_html": "https://nadre.ethernet.edu.et/record/14175", "badge": "https://nadre.ethernet.edu.et/badge/doi/10.20372/nadre%3A14175.svg", "latest": "https://nadre.ethernet.edu.et/api/records/14175" }, "conceptdoi": "10.20372/nadre:14174", "created": "2025-07-30T06:29:21.903752+00:00", "updated": "2025-07-30T06:29:21.971810+00:00", "conceptrecid": "14174", "revision": 1, "id": 14175, "metadata": { "access_right_category": "success", "doi": "10.20372/nadre:14175", "description": "<p>ADVISOR: BOKA KUMSA (PhD)</p>\n\n<p>In this thesis, we presented an analytical approximate solution to the Korteweg–de Vries<br>\n(KdV) equation, which has significant applications in various fields such as fluid dynamics,<br>\nplasma physics, and nonlinear optics. The kdv equation is solved using Adomian<br>\nDecomposition Method (ADM). The main focus of this study is to explore the analytical<br>\napproximation of the kdv equation using ADM, which provides rapidly converging series<br>\nsolutions. The accuracy of this method is demonstrated, and it is shown to be robust for a<br>\nvariety of boundary and initial conditions. The results suggest that ADM can serve as an<br>\nalternative to more complex numerical methods, particularly in cases where exact solutions<br>\nare unavailable or difficult to obtain. Furthermore, this thesis refines the ADM is efficient,<br>\nconvenient, and applicable to a wide range of problems, offering an effective approach for<br>\napproximating the solution of the kdv equation.<br>\nKeywords: Systems of nonlinear partial differential equations, Adomian decomposition<br>\nmethod, Modified decomposition method and Korteweg de Vries equation (KdV) equation</p>", "license": { "id": "opengroup" }, "title": "ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "14174" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "14175" } } ] }, "communities": [ { "id": "20-25" } ], "publication_date": "2025-07-05", "creators": [ { "name": "BY LEMESSA REGASSA TOLERA" } ], "access_right": "open", "resource_type": { "subtype": "thesis", "type": "publication", "title": "Thesis" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.20372/nadre:14174", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |