Thesis Open Access

ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD

BY LEMESSA REGASSA TOLERA


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://nadre.ethernet.edu.et/api/files/3586cd97-e5ea-4980-96e0-b2622f1cd458/LEMESSA%20REGASSA%20FINAL%20THESIS.pdf"
      }, 
      "checksum": "md5:072e3c7289164239e2d01c89ed5f4f3b", 
      "bucket": "3586cd97-e5ea-4980-96e0-b2622f1cd458", 
      "key": "LEMESSA REGASSA FINAL THESIS.pdf", 
      "type": "pdf", 
      "size": 2074366
    }
  ], 
  "owners": [
    48
  ], 
  "doi": "10.20372/nadre:14175", 
  "stats": {}, 
  "links": {
    "doi": "https://doi.org/10.20372/nadre:14175", 
    "conceptdoi": "https://doi.org/10.20372/nadre:14174", 
    "bucket": "https://nadre.ethernet.edu.et/api/files/3586cd97-e5ea-4980-96e0-b2622f1cd458", 
    "conceptbadge": "https://nadre.ethernet.edu.et/badge/doi/10.20372/nadre%3A14174.svg", 
    "html": "https://nadre.ethernet.edu.et/record/14175", 
    "latest_html": "https://nadre.ethernet.edu.et/record/14175", 
    "badge": "https://nadre.ethernet.edu.et/badge/doi/10.20372/nadre%3A14175.svg", 
    "latest": "https://nadre.ethernet.edu.et/api/records/14175"
  }, 
  "conceptdoi": "10.20372/nadre:14174", 
  "created": "2025-07-30T06:29:21.903752+00:00", 
  "updated": "2025-07-30T06:29:21.971810+00:00", 
  "conceptrecid": "14174", 
  "revision": 1, 
  "id": 14175, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.20372/nadre:14175", 
    "description": "<p>ADVISOR: BOKA KUMSA (PhD)</p>\n\n<p>In this thesis, we presented an analytical approximate solution to the Korteweg&ndash;de Vries<br>\n(KdV) equation, which has significant applications in various fields such as fluid dynamics,<br>\nplasma physics, and nonlinear optics. The kdv equation is solved using Adomian<br>\nDecomposition Method (ADM). The main focus of this study is to explore the analytical<br>\napproximation of the kdv equation using ADM, which provides rapidly converging series<br>\nsolutions. The accuracy of this method is demonstrated, and it is shown to be robust for a<br>\nvariety of boundary and initial conditions. The results suggest that ADM can serve as an<br>\nalternative to more complex numerical methods, particularly in cases where exact solutions<br>\nare unavailable or difficult to obtain. Furthermore, this thesis refines the ADM is efficient,<br>\nconvenient, and applicable to a wide range of problems, offering an effective approach for<br>\napproximating the solution of the kdv equation.<br>\nKeywords: Systems of nonlinear partial differential equations, Adomian decomposition<br>\nmethod, Modified decomposition method and Korteweg de Vries equation (KdV) equation</p>", 
    "license": {
      "id": "opengroup"
    }, 
    "title": "ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "14174"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "14175"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "20-25"
      }
    ], 
    "publication_date": "2025-07-05", 
    "creators": [
      {
        "name": "BY LEMESSA REGASSA TOLERA"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "thesis", 
      "type": "publication", 
      "title": "Thesis"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.20372/nadre:14174", 
        "relation": "isVersionOf"
      }
    ]
  }
}
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as