Thesis Open Access
BY LEMESSA REGASSA TOLERA
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.20372/nadre:14175</identifier> <creators> <creator> <creatorName>BY LEMESSA REGASSA TOLERA</creatorName> </creator> </creators> <titles> <title>ANALYTICAL APPROXIMATE SOLUTION OF KORTEWEG-DE VRIES (KDV) EQUESTION BY ADOMIAN DECOMPOSITION METHOD</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2025</publicationYear> <dates> <date dateType="Issued">2025-07-05</date> </dates> <resourceType resourceTypeGeneral="Text">Thesis</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/14175</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:14174</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/20-25</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opensource.org/licenses/opengroup.php">Open Group Test Suite License</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>ADVISOR: BOKA KUMSA (PhD)</p> <p>In this thesis, we presented an analytical approximate solution to the Korteweg&ndash;de Vries<br> (KdV) equation, which has significant applications in various fields such as fluid dynamics,<br> plasma physics, and nonlinear optics. The kdv equation is solved using Adomian<br> Decomposition Method (ADM). The main focus of this study is to explore the analytical<br> approximation of the kdv equation using ADM, which provides rapidly converging series<br> solutions. The accuracy of this method is demonstrated, and it is shown to be robust for a<br> variety of boundary and initial conditions. The results suggest that ADM can serve as an<br> alternative to more complex numerical methods, particularly in cases where exact solutions<br> are unavailable or difficult to obtain. Furthermore, this thesis refines the ADM is efficient,<br> convenient, and applicable to a wide range of problems, offering an effective approach for<br> approximating the solution of the kdv equation.<br> Keywords: Systems of nonlinear partial differential equations, Adomian decomposition<br> method, Modified decomposition method and Korteweg de Vries equation (KdV) equation</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |