Thesis Open Access
tewodros hailu
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.20372/nadre:4488</identifier> <creators> <creator> <creatorName>tewodros hailu</creatorName> </creator> </creators> <titles> <title>Network Traffic Classification Using Machine Learning: A Step Towards Over-the-Top Bypass Fraud Detection</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <dates> <date dateType="Issued">2018-11-14</date> </dates> <resourceType resourceTypeGeneral="Text">Thesis</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/4488</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:4487</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aau</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Over-the-Top (OTT) bypass is a type of Interconnect Bypass fraud where regular<br> voice calls are rerouted through OTT network and terminated as an OTT call. These<br> calls are terminated using OTT applications which need user&rsquo;s Mobile Station International<br> Subscriber Directory Number (MSISDN) for authentication. Detecting<br> OTT voice call packets through different network traffic classification techniques is<br> one subtask in the detection of this fraud.<br> In this thesis, performance of three machine learning algorithms; Adaptive Booster<br> (AdaBoost) + J48, Repeated Incremental Pruning to Produce Error Reduction (RIPPER),<br> and Support Vector Machine (SVM) is evaluated in detecting MSISDN-based OTT<br> packets taking Viber, Tango, and Telegram as a sample. Detection of OTT traffic<br> and voice call packets from the OTT traffic have been treated separately as classification<br> tasks. Ten cross-fold and separate test data validation techniques together<br> with 1.7 million labeled packets generated and captured in controlled laboratory<br> environment are used in the evaluation process.<br> AdaBoost + J48 achieved the best accuracy on both classification tasks compared to<br> the others while using ten cross-fold validation. However, an accuracy of 48.4%<br> obtained in detecting voice call packets while using separate test data validation<br> makes it less preferable in the classification task. Even if it takes longer time to<br> train SVM, it was the best performer (95.35% accurate) in detecting voice call packets<br> in separate test data validation. Considering accuracy attained by the algorithms<br> in separate test data validation technique together with the detection rate<br> of OTT voice call packets, SVM is preferable than the other two algorithms</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |