Thesis Open Access
tewodros hailu
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.20372/nadre:4488</identifier>
<creators>
<creator>
<creatorName>tewodros hailu</creatorName>
</creator>
</creators>
<titles>
<title>Network Traffic Classification Using Machine Learning: A Step Towards Over-the-Top Bypass Fraud Detection</title>
</titles>
<publisher>Zenodo</publisher>
<publicationYear>2018</publicationYear>
<dates>
<date dateType="Issued">2018-11-14</date>
</dates>
<resourceType resourceTypeGeneral="Text">Thesis</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/4488</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:4487</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/aau</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/zenodo</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Over-the-Top (OTT) bypass is a type of Interconnect Bypass fraud where regular<br>
voice calls are rerouted through OTT network and terminated as an OTT call. These<br>
calls are terminated using OTT applications which need user&rsquo;s Mobile Station International<br>
Subscriber Directory Number (MSISDN) for authentication. Detecting<br>
OTT voice call packets through different network traffic classification techniques is<br>
one subtask in the detection of this fraud.<br>
In this thesis, performance of three machine learning algorithms; Adaptive Booster<br>
(AdaBoost) + J48, Repeated Incremental Pruning to Produce Error Reduction (RIPPER),<br>
and Support Vector Machine (SVM) is evaluated in detecting MSISDN-based OTT<br>
packets taking Viber, Tango, and Telegram as a sample. Detection of OTT traffic<br>
and voice call packets from the OTT traffic have been treated separately as classification<br>
tasks. Ten cross-fold and separate test data validation techniques together<br>
with 1.7 million labeled packets generated and captured in controlled laboratory<br>
environment are used in the evaluation process.<br>
AdaBoost + J48 achieved the best accuracy on both classification tasks compared to<br>
the others while using ten cross-fold validation. However, an accuracy of 48.4%<br>
obtained in detecting voice call packets while using separate test data validation<br>
makes it less preferable in the classification task. Even if it takes longer time to<br>
train SVM, it was the best performer (95.35% accurate) in detecting voice call packets<br>
in separate test data validation. Considering accuracy attained by the algorithms<br>
in separate test data validation technique together with the detection rate<br>
of OTT voice call packets, SVM is preferable than the other two algorithms</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |