Thesis Open Access
tewodros hailu
{
"DOI": "10.20372/nadre:4488",
"author": [
{
"family": "tewodros hailu"
}
],
"issued": {
"date-parts": [
[
2018,
11,
14
]
]
},
"abstract": "<p>Over-the-Top (OTT) bypass is a type of Interconnect Bypass fraud where regular<br>\nvoice calls are rerouted through OTT network and terminated as an OTT call. These<br>\ncalls are terminated using OTT applications which need user’s Mobile Station International<br>\nSubscriber Directory Number (MSISDN) for authentication. Detecting<br>\nOTT voice call packets through different network traffic classification techniques is<br>\none subtask in the detection of this fraud.<br>\nIn this thesis, performance of three machine learning algorithms; Adaptive Booster<br>\n(AdaBoost) + J48, Repeated Incremental Pruning to Produce Error Reduction (RIPPER),<br>\nand Support Vector Machine (SVM) is evaluated in detecting MSISDN-based OTT<br>\npackets taking Viber, Tango, and Telegram as a sample. Detection of OTT traffic<br>\nand voice call packets from the OTT traffic have been treated separately as classification<br>\ntasks. Ten cross-fold and separate test data validation techniques together<br>\nwith 1.7 million labeled packets generated and captured in controlled laboratory<br>\nenvironment are used in the evaluation process.<br>\nAdaBoost + J48 achieved the best accuracy on both classification tasks compared to<br>\nthe others while using ten cross-fold validation. However, an accuracy of 48.4%<br>\nobtained in detecting voice call packets while using separate test data validation<br>\nmakes it less preferable in the classification task. Even if it takes longer time to<br>\ntrain SVM, it was the best performer (95.35% accurate) in detecting voice call packets<br>\nin separate test data validation. Considering accuracy attained by the algorithms<br>\nin separate test data validation technique together with the detection rate<br>\nof OTT voice call packets, SVM is preferable than the other two algorithms</p>",
"title": "Network Traffic Classification Using Machine Learning: A Step Towards Over-the-Top Bypass Fraud Detection",
"type": "thesis",
"id": "4488"
}
| All versions | This version | |
|---|---|---|
| Views | 0 | 0 |
| Downloads | 0 | 0 |
| Data volume | 0 Bytes | 0 Bytes |
| Unique views | 0 | 0 |
| Unique downloads | 0 | 0 |