Thesis Open Access

PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA

HABTU REDA


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20241007080802.0</controlfield>
  <controlfield tag="001">2742</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1885429</subfield>
    <subfield code="z">md5:c09450d9656de07585958a1f351bd6aa</subfield>
    <subfield code="u">https://zenodo.org/record/2742/files/f1050029912.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-aastu</subfield>
    <subfield code="p">user-zenodo</subfield>
    <subfield code="o">oai:zenodo.org:2742</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">HABTU REDA</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-aastu</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-zenodo</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Estimating public bus arrival times and delivering accurate arrival time information to&lt;br&gt;
passengers are critical for making public transportation more user-friendly and thereby&lt;br&gt;
increasing its competitiveness among various forms of transportation. However public bus&lt;br&gt;
arrival time prediction remains major bottlenecks With traffic heterogeneity in composition and&lt;br&gt;
diversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,&lt;br&gt;
predicting the arrival time of public buses at stations is a severe concern.. The main objective of&lt;br&gt;
this study is to apply machine learning algorithms to predict bus arrival time. The data was&lt;br&gt;
collected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,&lt;br&gt;
Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are&lt;br&gt;
applied to build the models and to compare and choose the best model to predict the bus arrival&lt;br&gt;
time. After selecting the features and algorithms, different data preprocessing tasks like checking&lt;br&gt;
outliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are&lt;br&gt;
used to train and build the model&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.20372/nadre:2741</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre:2742</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as