Thesis Open Access
HABTU REDA
{ "files": [ { "links": { "self": "https://nadre.ethernet.edu.et/api/files/eb8dc83f-1ba2-4b4f-8889-85326cfcef22/f1050029912.pdf" }, "checksum": "md5:c09450d9656de07585958a1f351bd6aa", "bucket": "eb8dc83f-1ba2-4b4f-8889-85326cfcef22", "key": "f1050029912.pdf", "type": "pdf", "size": 1885429 } ], "owners": [ 11 ], "doi": "10.20372/nadre:2742", "stats": {}, "links": { "doi": "https://doi.org/10.20372/nadre:2742", "conceptdoi": "https://doi.org/10.20372/nadre:2741", "bucket": "https://nadre.ethernet.edu.et/api/files/eb8dc83f-1ba2-4b4f-8889-85326cfcef22", "conceptbadge": "https://nadre.ethernet.edu.et/badge/doi/10.20372/nadre%3A2741.svg", "html": "https://nadre.ethernet.edu.et/record/2742", "latest_html": "https://nadre.ethernet.edu.et/record/2742", "badge": "https://nadre.ethernet.edu.et/badge/doi/10.20372/nadre%3A2742.svg", "latest": "https://nadre.ethernet.edu.et/api/records/2742" }, "conceptdoi": "10.20372/nadre:2741", "created": "2024-10-07T08:08:00.409490+00:00", "updated": "2024-10-07T08:08:02.460794+00:00", "conceptrecid": "2741", "revision": 3, "id": 2742, "metadata": { "access_right_category": "success", "doi": "10.20372/nadre:2742", "description": "<p>Estimating public bus arrival times and delivering accurate arrival time information to<br>\npassengers are critical for making public transportation more user-friendly and thereby<br>\nincreasing its competitiveness among various forms of transportation. However public bus<br>\narrival time prediction remains major bottlenecks With traffic heterogeneity in composition and<br>\ndiversity of vehicles, as well as a big pedestrian population combined with inadequate lane use,<br>\npredicting the arrival time of public buses at stations is a severe concern.. The main objective of<br>\nthis study is to apply machine learning algorithms to predict bus arrival time. The data was<br>\ncollected from Addis Ababa Sheger Public Bus Transport. Random Forest, Gradient Boosting,<br>\nArtificial Neural Network, K-Nearest Neighbors and Support Vector Machine algorithms are<br>\napplied to build the models and to compare and choose the best model to predict the bus arrival<br>\ntime. After selecting the features and algorithms, different data preprocessing tasks like checking<br>\noutliers, missing values and data reduction are done. Finally, 140,000 instances of dataset are<br>\nused to train and build the model</p>", "license": { "id": "cc-by" }, "title": "PUBLIC BUS ARRIVAL TIME PREDICTION USING MACHINE LEARNING: IN CASE OF ADDIS ABABA", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "2741" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "2742" } } ] }, "communities": [ { "id": "aastu" }, { "id": "zenodo" } ], "publication_date": "2021-10-01", "creators": [ { "name": "HABTU REDA" } ], "access_right": "open", "resource_type": { "subtype": "thesis", "type": "publication", "title": "Thesis" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.20372/nadre:2741", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |