Thesis Open Access

Customer Perception and Responsiveness Behavior Study on Bulk SMS Advertisements for Target Customer Identification: The case of Ethio Telecom

samuel getachew


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.20372/nadre:1951">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.20372/nadre:1951</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.20372/nadre:1951"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>samuel getachew</foaf:name>
      </rdf:Description>
    </dct:creator>
    <dct:title>Customer Perception and Responsiveness Behavior Study on Bulk SMS Advertisements for Target Customer Identification: The case of Ethio Telecom</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-02-25</dct:issued>
    <owl:sameAs rdf:resource="https://nadre.ethernet.edu.et/record/1951"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://nadre.ethernet.edu.et/record/1951</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.20372/nadre:1950"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/aau"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/zenodo"/>
    <dct:description>&lt;p&gt;Bulk-messaging, one of the technologies carried by the telecom industry, is a process&lt;br&gt; of sending a large number of messages to many people at once. It is likely&lt;br&gt; a more economical and effective way of marketing media as compared to others.&lt;br&gt; Therefore, many companies are using this service for advertisement. Since it is&lt;br&gt; most likely flooding without customers&amp;rsquo; consent, it can be one of the services that&lt;br&gt; affect customers&amp;rsquo; responsiveness behavior. Studying customers&amp;rsquo; preferences prior&lt;br&gt; to sending a message will help to overcome resource dissipation due to messaging&lt;br&gt; and reduces customers&amp;rsquo; offensiveness.&lt;br&gt; The aim of this thesis is to identify factors that affect customers&amp;rsquo; responsiveness&lt;br&gt; attitude and classify customers based on the level of responses, towards bulkmessaging&lt;br&gt; advertisements in the case of Ethio Telecom customers. In this thesis,&lt;br&gt; two different types of data were used i.e. data collected in-person via questionnaire&lt;br&gt; and a Call Detail Records (CDR) data. Among 620 distributed questionnaires&lt;br&gt; 528 were replied. Moreover, a CDR data of 29,506 messages got responses&lt;br&gt; among 419,249 delivered messages. A statistical mean method and data mining&lt;br&gt; techniques were used to classify a survey and CDR data respectively.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="http://www.opendefinition.org/licenses/cc-by">
            <rdfs:label>Creative Commons Attribution</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:1951"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:1951"/>
        <dcat:byteSize>1238453</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://nadre.ethernet.edu.et/record/1951/files/f1046725824.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as