Thesis Open Access

NUMERICAL SOLUTION OF SYSTEM OF NONLINEAR VOLTERRA INTEGRAL EQUATION OF SECOND KIND USING PREDICTOR CORRECTOR METHOD OF FIFTH ORDER

WARKINA SEKA FUFA


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20250807071454.0</controlfield>
  <controlfield tag="001">16112</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">975639</subfield>
    <subfield code="z">md5:a2ef8c0a4479fd491212d981ddfddd56</subfield>
    <subfield code="u">https://zenodo.org/record/16112/files/Approved Warkina seka thesis.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-12-11</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-20-25</subfield>
    <subfield code="o">oai:zenodo.org:16112</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">WARKINA SEKA FUFA</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">NUMERICAL SOLUTION OF SYSTEM OF NONLINEAR  VOLTERRA INTEGRAL EQUATION OF SECOND KIND USING  PREDICTOR CORRECTOR METHOD OF FIFTH ORDER</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-20-25</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/odc-by</subfield>
    <subfield code="a">Open Data Commons Attribution License</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Advisor: Naol Tufa (PhD)&lt;/p&gt;

&lt;p&gt;Abstract&lt;/p&gt;

&lt;p&gt;This paper presents numerical solution of system of non-linear volterra integral equation of the second kind using predictor corrector method (P-CM) of fifth order. The two multistep method Adams-Bashforth and Adams-moulton method are applied. The convergence and stability of the method are proved. The numerical solutions are in a good agreement with exact solutions. Fifth order runge kutta method (RK5) for solving system of non-linear volterra integral equation of second kind is done for predictor corrector method. The two model examples system of non-linear volterra integral equations are given to demonstrate reliability and efficiency of the methods. The numerical results have been tabulated for different mesh size and presented in the graph.&lt;/p&gt;

&lt;p&gt;Key words: System of non-linear volterra integral equation, Predictor &amp;ndash;corrector method, Stability analysis&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.20372/nadre:16111</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre:16112</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
</record>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as