Thesis Open Access

NUMERICAL SOLUTION OF SYSTEM OF NONLINEAR VOLTERRA INTEGRAL EQUATION OF SECOND KIND USING PREDICTOR CORRECTOR METHOD OF FIFTH ORDER

WARKINA SEKA FUFA


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.20372/nadre:16112</identifier>
  <creators>
    <creator>
      <creatorName>WARKINA SEKA FUFA</creatorName>
    </creator>
  </creators>
  <titles>
    <title>NUMERICAL SOLUTION OF SYSTEM OF NONLINEAR  VOLTERRA INTEGRAL EQUATION OF SECOND KIND USING  PREDICTOR CORRECTOR METHOD OF FIFTH ORDER</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2024</publicationYear>
  <dates>
    <date dateType="Issued">2024-12-11</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Thesis</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/16112</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:16111</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/20-25</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/odc-by">Open Data Commons Attribution License</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Advisor: Naol Tufa (PhD)&lt;/p&gt;

&lt;p&gt;Abstract&lt;/p&gt;

&lt;p&gt;This paper presents numerical solution of system of non-linear volterra integral equation of the second kind using predictor corrector method (P-CM) of fifth order. The two multistep method Adams-Bashforth and Adams-moulton method are applied. The convergence and stability of the method are proved. The numerical solutions are in a good agreement with exact solutions. Fifth order runge kutta method (RK5) for solving system of non-linear volterra integral equation of second kind is done for predictor corrector method. The two model examples system of non-linear volterra integral equations are given to demonstrate reliability and efficiency of the methods. The numerical results have been tabulated for different mesh size and presented in the graph.&lt;/p&gt;

&lt;p&gt;Key words: System of non-linear volterra integral equation, Predictor &amp;ndash;corrector method, Stability analysis&lt;/p&gt;</description>
  </descriptions>
</resource>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as