Journal article Closed Access

Solution for non-linear fractional partial differential equations using fractional complex transform

Tesfaye Teferi Shone & A. Patra


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.20372/nadre:13293</identifier>
  <creators>
    <creator>
      <creatorName>Tesfaye Teferi Shone &amp; A. Patra</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6110-9638</nameIdentifier>
      <affiliation>KIIT University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Solution for non-linear fractional partial differential equations using fractional complex transform</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Caputo derivative · Fractional complex transform · Gas dynamic equations</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-05-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/13293</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:13292</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/mwu123-un</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/closedAccess">Closed Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this research article, we have adapted fractional complex transform (FCT) in addition some new iterative method i.e. to obtain the relative solution of nonlinear gas dynamics equations. To know about the persuasiveness of the method, we apply the method to solve such two examples of fractional differential equations which are completely nonlinear. The approximation results obtained from FCT are compared with the exact solution. From the results it can be concluded that the proposed method is very auspicious, simple and clout.2&lt;/p&gt;</description>
  </descriptions>
</resource>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as