Journal article Closed Access

Solution for non-linear fractional partial differential equations using fractional complex transform

Tesfaye Teferi Shone & A. Patra


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.20372/nadre:13293">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.20372/nadre:13293</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.20372/nadre:13293"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-6110-9638">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-6110-9638</dct:identifier>
        <foaf:name>Tesfaye Teferi Shone &amp; A. Patra</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>KIIT University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Solution for non-linear fractional partial differential equations using fractional complex transform</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>Caputo derivative · Fractional complex transform · Gas dynamic equations</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-05-30</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://nadre.ethernet.edu.et/record/13293"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://nadre.ethernet.edu.et/record/13293</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.20372/nadre:13292"/>
    <dct:isPartOf rdf:resource="https://nadre.ethernet.edu.et/communities/mwu123-un"/>
    <dct:description>&lt;p&gt;In this research article, we have adapted fractional complex transform (FCT) in addition some new iterative method i.e. to obtain the relative solution of nonlinear gas dynamics equations. To know about the persuasiveness of the method, we apply the method to solve such two examples of fractional differential equations which are completely nonlinear. The approximation results obtained from FCT are compared with the exact solution. From the results it can be concluded that the proposed method is very auspicious, simple and clout.2&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/NON_PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/closedAccess">
        <rdfs:label>Closed Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
  </rdf:Description>
</rdf:RDF>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as