Journal article Open Access
Nigusu Alemu Tamene
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Nigusu Alemu Tamene</dc:creator> <dc:date>2025-05-12</dc:date> <dc:description>This thesis is attempted to introduce on fitted numerical solution of singularly perturbed parabolic delay differential equation involving small delay.Due to the appearance of the multi-scale phenomena,it is not an easy task to solve this problem analytically. Consequently,a direct or analytical for fitted numerical scheme for singularly perturbed parabolic delay differential equation involving small delay is still lacking, so one has to rely on numerical method for this problem. The scheme comprises for this problem is an implicit Euler method to discretized time variable on uniform mesh and cubic spline in tension method on space variable.The solution of the problem exhibits a parabolic boundary layer in the neighborhood of x=0. The main purpose of this study is to develop and analyze the fitted numerical scheme for singularly perturbed parabolic delay differential equation involving small delay.</dc:description> <dc:identifier>https://zenodo.org/record/6265</dc:identifier> <dc:identifier>10.20372/nadre:6265</dc:identifier> <dc:identifier>oai:zenodo.org:6265</dc:identifier> <dc:relation>doi:10.20372/nadre:6264</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:title>Fitted Numerical Scheme for Solving Singularly Perturbed Parabolic Delay Differential Equation Involving Small Delay</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |