Journal article Open Access
CHALEW ESHETE WARE
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20250510162523.0</controlfield> <controlfield tag="001">6231</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">10934811</subfield> <subfield code="z">md5:616459f513cf93c9c5ff7d5cc450ad49</subfield> <subfield code="u">https://zenodo.org/record/6231/files/ANALAYSIS OF HEAT TRANSFER.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2025-05-09</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">user-slu</subfield> <subfield code="p">user-zenodo</subfield> <subfield code="o">oai:zenodo.org:6231</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">SALALE UNIVERSITY</subfield> <subfield code="a">CHALEW ESHETE WARE</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">ANALAYSIS OF HEAT TRANSFER ON NANOFLUID FLOW OVER A LINEARLY POROUS STRETCHING SHEET VIA RUNGE KUTTA METHOD</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-slu</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-zenodo</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>In this study, we developed the mathematical version and applied the boundary layer approximations to reduce the system of partial differential equations. Similarly, the suitable similarity transformations are implemented at the partial differential equations to make dimensionless system. The dimensionless system solved numerical scheme through Runge Kutta Fehlberg shooting techniques using Maple software. Effects on velocity and temperature distributions for influences of nanoparticle volume fraction, suction parameter, porous parameter, buoyancy parameter and Prandtl number are plotted and physical aspects are discussed. Moreover, outcomes of embedded parameters on skin friction and rate of heat transfer are predicted and given in tabular form. It is found that the temperature of nanofluid and the heat transfer rate enhanced for higher nanoparticle volume fraction. These results are more significant which may apply in the field of engineering and industrial. SWCNTs nanofluids in porous stretching sheet have novel properties that cause them to probably useful in many applications in heat transfer. It is investigated that the thermal boundary layer thickness of the water based Cu nanofluid flow is stronger as correlated to the water based SWCNTs nanofluid flow with increase of buoyancy parameter</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.20372/nadre:6230</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.20372/nadre:6231</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |