Thesis Open Access

Recurrent Neural Network-based Base Transceiver Station Power System Failure Prediction

Tewodros Kibatu


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.20372/nadre:2123</identifier>
  <creators>
    <creator>
      <creatorName>Tewodros Kibatu</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Recurrent Neural Network-based Base Transceiver Station Power System  Failure Prediction</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-12-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Thesis</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/2123</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:2122</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Global network infrastructures are increasing with the development of new technologies and growth in Internet traffic. As network infrastructures increases, maintaining and monitoring them will become very challenging since thousands of alarms are generated every day. Clearing those alarms by corrective maintenance activities require considerable effort and resources (car, labour, and budget).&lt;/p&gt;</description>
  </descriptions>
</resource>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as