Journal article Open Access
Bayou Tilahun Assaye; Bekalu Endalew; Maru Meseret Tadele; Gizaw hailiye Teferie; Abraham Teym; Yidersal hune Melese; Andualem fentahun senishaw; Sisay Maru Wubante; Habtamu Setegn Ngusie; Aysheshim Belaineh Haimanot
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Big health data Data analytics Data management Health information revolution Health sectors Readiness</subfield> </datafield> <controlfield tag="005">20250915110138.0</controlfield> <controlfield tag="001">18409</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Bekalu Endalew</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Health Informatics, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Maru Meseret Tadele</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Health Informatics, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Gizaw hailiye Teferie</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Environmental Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Abraham Teym</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Human Nutrition, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Yidersal hune Melese</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Andualem fentahun senishaw</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Health Informatics, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia</subfield> <subfield code="a">Sisay Maru Wubante</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Health Informatics, College of Medicine and Health Science, Woldia University, Woldia, Ethiopia</subfield> <subfield code="a">Habtamu Setegn Ngusie</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Aysheshim Belaineh Haimanot</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">4262497</subfield> <subfield code="z">md5:9ca04d85054c8b7b344b30f1c3b7b2f8</subfield> <subfield code="u">https://zenodo.org/record/18409/files/Readiness of big health data analytics by.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2025-09-14</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">user-zenodo</subfield> <subfield code="p">user-nadre</subfield> <subfield code="p">user-wu</subfield> <subfield code="o">oai:zenodo.org:18409</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Department of Health Informatics, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia</subfield> <subfield code="a">Bayou Tilahun Assaye</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Readiness of big health data analytics by technology-organization-environment (TOE) framework in Ethiopian health sectors</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-nadre</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-wu</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-zenodo</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Background: Big health data is a large and complex dataset that the health sector has collected and stored continuously to generate healthcare evidence for intervening the future healthcare un certainty. However, data use for decision-making practices has been significantly low in devel oping countries, especially in Ethiopia. Hence, it is critical to ascertain which elements influence the health sector&rsquo;s decision to adopt big health data analytics in health sectors. The aim of this study was to identify the level of readiness for big health data analytics and its associated factors in healthcare sectors. Methods: A cross-sectional study design was conducted among 845 target employees using the structural equation modeling approach by using technological, organizational, and environ mental (TOE) frameworks. The target population of the study was health sector managers, di rectors, team leaders, healthcare planning officers, ICT/IT managers, and health professionals. For data analysis, exploratory factor analysis using SPSS 20.0 and structural equation modeling using AMOS software were used. Result: 58.85 % of the study participants had big health data analytics readiness. Complexity (CX), Top management support (TMS), training (TR) and government law policies and legislation (GLAL) and government IT policies (GITP) had positive direct effect, compatibility (CT), and optimism (OP) had negative direct effect on BD readiness (BDR) Conclusion: The technological, organizational, and environmental factors significantly contributed to big health data readiness in the healthcare sector. The Complexity, compatibility, optimism, Top management support, training (TR) and government law and IT policies (GITP) had effect on big health data analytics readiness. Formulating efficient reform in healthcare sectors, especially&nbsp;for evidence-based decision-making and jointly working with stakeholders will be more relevant for effective implementation of big health data analytics in healthcare sectors.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.20372/nadre:18408</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.20372/nadre:18409</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |