Thesis Open Access
Jawaro Haso Jemal
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.20372/nadre:12547</identifier> <creators> <creator> <creatorName>Jawaro Haso Jemal</creatorName> <affiliation>MADDA WALABU UNIVERSITY</affiliation> </creator> </creators> <titles> <title>Exact Solution for the Jimbo Miwa Equation By Using Spectral Method</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2024</publicationYear> <subjects> <subject>Jimbo-Miwa equation , Exact solution ,Spectral method ,Fourier Basis Functions.</subject> </subjects> <contributors> <contributor contributorType="Supervisor"> <contributorName>Teferi Tesfaye (Ph.D)</contributorName> <affiliation>MADDA WALABU UNIVERSITY</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2024-02-05</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Thesis</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://nadre.ethernet.edu.et/record/12547</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.20372/nadre:12546</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://nadre.ethernet.edu.et/communities/mwu123-un</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>In this thesis, we have presented the exact solution for the Jimbo-Miwa equation using spectral method with Fourier as basis functions. A basis function is a mathematical concept that allows us to represent any function in a given space as a linear combination of simpler functions. The Spectral method is powerful numerical technique that rely on expanding the solution in terms of a set of basis functions and determining the coefficients of the solution function of the solution for Jimbo-Miwa equation. By applying this method with Fourier as basis functions, we have able to derive the exact solution for the Jimbo-Miwa equation. The Fourier basis functions provide a convenient framework for representing the solution and prove to be a valuable approach in solving the Jimbo-Miwa equation efficiently and accurately. This demonstrate the effectiveness of spectral method in obtaining the exact solution for the Jimbo-Miwa equation. 5<br> &nbsp;</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |