Thesis Open Access

PREDICTION OF MALNUTRITION STATUS AMONG UNDER FIVE AGE CHILDREN IN ETHIOPIA USING DEEP LEARNING APPROACH

Mekbib Berihun


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.20372/nadre:10429">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.20372/nadre:10429</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.20372/nadre:10429"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Mekbib Berihun</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Woldia University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>PREDICTION OF MALNUTRITION STATUS AMONG UNDER FIVE AGE CHILDREN IN ETHIOPIA USING DEEP LEARNING APPROACH</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2024</dct:issued>
    <dcat:keyword>Malnutrition, Deep Learning, Ethiopia, Machine Learning, Hyperparameters</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2024-05-27</dct:issued>
    <owl:sameAs rdf:resource="https://nadre.ethernet.edu.et/record/10429"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://nadre.ethernet.edu.et/record/10429</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.20372/nadre:10428"/>
    <dct:description>&lt;p&gt;Malnutrition is a significant public health issue, particularly in developing countries, and Ethiopia is no exception. Due to this, we have developed a prediction of malnutrition status among children under the age of five in Ethiopia using a deep learning approach. The prevalence of malnutrition in Ethiopia is alarming, with high rates of stunting, underweight, wasting, and overweight. The objective of this study is to develop a predictive model that can identify children at high risk of malnutrition using deep learning algorithms. By analyzing relevant factors such as age, height, weight, wealth index, maternal education, and other healthcare indicators. The proposed model aims to improve the understanding and prediction of malnutrition status. The study also focuses on the importance of addressing malnutrition through data-driven approaches and emphasizes the potential of deep learning in this context. The deep learning techniques that are suitable for our malnutrition status prediction model using a secondary dataset from (EDHS). The study used a deep learning algorithm ANN and the other four machine learning algorithms among them ANN 91.7%, DT 90.2%, LR 89%, RF 91`%, and SVM 81.7%, and compared the result. When we look at the results, we observe that ANN outperformed the other four machinelearning methods. We would like to recommend predicting the malnutrition status by using deep learning approaches to compare with our results and using more sample sizes as well increase the predictive variables and using the image dataset. The findings of this research can contribute to the development of effective interventions and policies to combat malnutrition among children in Ethiopia&lt;br&gt; &amp;nbsp;&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="http://www.opendefinition.org/licenses/cc-by">
            <rdfs:label>Creative Commons Attribution</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:10429"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.20372/nadre:10429"/>
        <dcat:byteSize>2245794</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://nadre.ethernet.edu.et/record/10429/files/Mekbib_Final.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as