Thesis Open Access

Enhanced Security Mechanism to Detect Sybil Attacks in VANETs

Shambel, Tseggaye Getaneh


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre/6274</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Shambel, Tseggaye Getaneh</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Vehicular Ad hoc Networks (VANETs) are infrastructure less wireless networks in which the communication is achieved through the Dedicated Short Range Communication (DSRC) protocol in a single or multi-hop communication mode. Due to the selfconfigurable nature and lack of central management, vehicular ad hoc network is vulnerable to different types of malicious attacks. Among these, Sybil attack is one of the serious security threats that can change its identification number from time to time and easily influence the entire of the network, especially the routing process. We have implemented a mechanism to detect and prevent both internal and external Sybil attack influences. In this research work, security mechanism for VANET, Enhanced Security Mechanism for Detecting Sybil Attack in VANET Using AODV (ESMDSAVAODV), is proposed to detect Sybil attacks on vehicular ad hoc networks. The proposed system works based on the principle of registration, and use identification number, status and security key for the verification. This means vehicles before joining the network are registered on Road Side Unit (RSU) with their identification number, then the road side unit assigned security key with their identification number and define the speed of the vehicle in the defined network. It is implemented and tested using the Network Simulation version 2.35. Our proposed algorithm enhanced the process of detection and reduces the effect of Sybil attacks. The simulation result shows our proposed algorithm enhances the detection rate, false positive rate and false negative rate by 94%, 6% and 7%, respectively.&lt;/p&gt;</subfield>
  </datafield>
  <controlfield tag="005">20200518160158.0</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-dbu</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-nadre</subfield>
  </datafield>
  <controlfield tag="001">6274</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2444526</subfield>
    <subfield code="u">https://nadre.ethernet.edu.et/record/6274/files/shambelTseggayeSybilattackdetectionontheVANET.pdf</subfield>
    <subfield code="z">md5:30e9838aa6ebbc05b0d7307814ccde21</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Enhanced Security Mechanism to Detect Sybil Attacks in VANETs</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-01</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">978-963-313-151-0</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="n">isbn</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre/6273</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
</record>
59
14
views
downloads
All versions This version
Views 5959
Downloads 1414
Data volume 34.2 MB34.2 MB
Unique views 3333
Unique downloads 1212

Share

Cite as