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Abstract

This thesis is attempted to introduce on fitted numerical solution of singularly perturbed

parabolic delay differential equation involving small delay.Due to the appearance of the

multi-scale phenomena,it is not an easy task to solve this problem analytically. Conse-

quently,a direct or analytical for fitted numerical scheme for singularly perturbed parabolic

delay differential equation involving small delay is still lacking, so one has to rely on numer-

ical method for this problem. The scheme comprises for this problem is an implicit Euler

method to discretized time variable on uniform mesh and cubic spline in tension method

on space variable.The solution of the problem exhibits a parabolic boundary layer in the

neighborhood of x=0. The main purpose of this study is to develop and analyze the fitted

numerical scheme for singularly perturbed parabolic delay differential equation involving

small delay.
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Chapter 1

Introduction

1.1 Background of the Study

Mathematical models are developed to help in understanding of physical phenomena. A

model is simplified version of the process that approximate the behavior of its subject of

phenomena. Due to the difficulties in ending the analytical solution of mathematical prob-

lems,leads to the development of numerical analysis. Numerical analysis is a branch of

mathematics that provides tools and methods for solving mathematical/real-life problems

in numerical form (Gautschi, 2011).

Numerical analysis is concerned with the mathematical derivation of numerical meth-

ods,designing an algorithm for numerical methods and implementation of these algorithm

on computers. It is also focuses on analysis of the errors associated with numerical methods

to solve the mathematical problems.

Many problem in science and engineering can be modeled by differential equations involving

small parameters. These models often yield equation involving derivatives of one or more de-

pendent variables concerning one or more independent variable and this equation are called

a differential equations(DEs). Those differential equations in which the unknown function is

a function of only one independent variable are called ordinary differential equation(ODEs).

A differential equation involving partial derivatives of unknown functions concerning two

or more independent variables are called partial differential equations(PDEs).
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A parabolic partial differential equation (PPDEs) are a type of partial equations that

are used to describe a wide variety of time dependent phenomena,including heat conduc-

tion,particle diffusion and pricing derivatives of investment instruments. Such type of

phenomena are extremely difficult (even impossible) to solve their exact solution math-

ematically. In this circumstance approximate solutions and the development of numerical

methods to obtain approximate solution becomes necessary. To that extent, several numer-

ical methods such as FDM,FEM and spline approximations methods,among others have

developed in the literature based on the nature and type of the differential equation to

solve these problems.

A singular perturbation was introduced by Prandtl at the Third International Congress of

mathematicians in 1904. Many practical problems such as mathematical layer theory or

approximation of the solutions of various problems are described by differential equation

involving large or small parameter. A singularly perturbed differential equation (SPDE) is

a differential equation in which the highest order derivative is multiplied by small positive

parameter.

The points of the domain where coefficients of the convection term in the singularly per-

turbed differential equation vanishes are known as the turning points. The solution of such

type of differential equation exhibits boundary layers or interior layers depending upon the

nature of convection and reaction term.If the turning point occurs at the boundary of the

domain then the problem is called as a boundary turning problem, otherwise it is an interior

turning point problem.

Singularly perturbed problems with boundary turning point attracted the attention of var-

ious researchers due to their importance in the modeling of many real life phenomenons in

engineering and science. (Hanks, 1971) stated single boundary turning point problem arise

in the modeling if heat and mass transport flow near an oceanic rise due to linear velocity

distribution.

The multiple boundary turning point problems arise in the modeling of the thermal bound-

ary layers in laminar flow Schlichting (1979). The mathematical modeling of the process of

the convective transport of diffusing substance (heat,matter) when rate of the flow from one

of the boundaries is proportional to the distance from the boundary results into singularly

perturbed problem(SPP) with a boundary turning point.
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1.2 Statement of the Problem

In the past and recent years studies much interest have been given to solve unsteady Sin-

gularly perturbed parabolic delay differential equations, due to their wide applicability in

modeling of processes in various application fields. Finding the solution to these problems

has a significant role to capture the behavior of the physical phenomena of the problems.

Most of the existing published works deal with the numerical treatment of the classical

singularly perturbed parabolic delay differential equations.

(Gupta et al., 2018), Higher order numerical approximation time-dependent singularly per-

turbed differential difference convection diffusion equations.

(Yüzbaşı and Sezer, 2013) used an exponential collection method for finding solution of

second order singularly perturbed delay differential equations.

(File et al., 2013) presented a computational method to solve equation with negative shift

whose solution has boundary layer. In this scheme author reduced the second order SPDDE

to first order equation and then employed numerical integration and interpolations.

(Doğan et al., 2012) A parameter-uniform numerical method for time-dependent singularly

perturbed differential-difference equations. (Ramesh and Kadalbajoo, 2008) Upwind and

midpoint upwind difference methods for time-dependent differential difference equations

with layer behavior.

Mbroh et al. (2021)proposed the Crank Nicolson finite difference to discretized the time

and a fitted finite difference scheme to discretized space derivative based on the mid point

downwind scheme for a singularly perturbed degenerate parabolic problem.

Singh et al. (2022) developed a numerical scheme to solve singularly perturbed convec-

tion diffusion type degenerate parabolic problems using the Crank Nicolson scheme to

discretized temporal direction and quadratic spline collocation method to discretized in

space direction for singularly perturbed degenerated parabolic problems.
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Rai and Yadav (2021) considered a numerical method which consists of backward Euler

scheme for time discretization on uniform mesh and a combination of midpoint upwind and

central difference scheme for the space discretization on modified shishkin mesh. Further,

they increased the order of convergence in time direction by Richardson extrapolation for

singular perturbed delay parabolic convection diffusion problems with degenerate coeffi-

cient.

Ku Sahoo and Gupta (2021) discussed scheme consists of an implicit Euler method on uni-

form mesh in time and simple upwind scheme on piecewise uniform mesh in the space for

singularly perturbed parabolic problem with a boundary turning point. Then, they applied

the Richardson extrapolation on scheme in both time and space direction to improve the

order of convergence.

Woldaregay and Duressa (2021) numerical treatment of singularly perturbed parabolic de-

lay differential equation is solved. However, the methods suggested above for unsteady

Singularly perturbed parabolic delay differential equations,classical numerical methods on

a uniform mesh fail to approximate the singularly perturbed parabolic delay differential

equations. The author require an unacceptably large number of mesh points to sustain the

approximation because the mesh width depends on the perturbation parameter ε. This

limitation of the conventional numerical methods has encouraged researchers to develop

delay numerical techniques that perform well enough independent of the ε.

Recently,Gelu and Duressa (2022) proposed an implicit trapezoidal method for time dis-

cretization on uniform mesh and second order central difference scheme for space discretiza-

tion on Shishkin mesh on singularly perturbed parabolic turning point problem with Robin

boundary condition.

Nevertheless, from this thesis the solution methodologies to solve the singularly perturbed

parabolic delay differential equations is at infant stage and it needs a lot of studies. This

motivates the researchers to develop and analyze a parameter uniform numerical schemes

for solving the singularly perturbed parabolic delay differential equations.

Therefore,the main purpose of this study is to construct implicit Euler method to discretize

the time variable and cubic spline in tension to discretize the space variable to solve singu-

larly perturbed parabolic problems with Dirichlet boundary condition.
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Owing to this,the present study attempted to answer the following question:

. How do we describe fitted numerical scheme for solving singularly perturbed parabolic

delay differential equation involving small delay?

. How to provide a layer resolving parameter uniform method with sufficient accuracy?

. To what extent the proposed method converges?
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1.3 Objectives of the Study

1.3.1 General Objective

The general objective of this study is to formulate the implicit Euler and cubic spline

in tension method for solving singularly perturbed parabolic delay differential equation

involving small delay.

1.3.2 Specific Objectives

The specific objectives for singularly perturbed parabolic delay differential equations are:

1. To develop the method for solving the problem

2. To develop ε uniform numerical scheme for solving singularly perturbed parabolic

delay differential equation

3. To establish the stability and convergence of the proposed numerical scheme.

1.4 Significance of the Study

The future behaviors of singularly perturbed parabolic delay differential equation

problems are assumed to be described by their solutions. However, it is not easy to

solve singularly perturbed parabolic delay differential equation due to the presence of

a thin boundary layer in the solution.

The outcomes of this study may have the following importance:

⇒ To provide numerical method for solving singularly perturbed parabolic problems

with involving small delay.

⇒ Use as reference materials for scholars who works on this area.

⇒ Helps the graduate students to acquire research skill and scientific procedures.
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1.5 Delimitation of the Study

Even though singularly perturbed parabolic delay differential equations are vast topics,this

thesis is delimited to focus on fitted numerical scheme for solving singularly perturbed

parabolic delay differential equation involving small delay.

∂u(x, t)

∂t
− ε∂

2u(x, t)

∂x2
+ a(x)

∂u(x, t)

∂x
(x− δ, t) + b(x)u(x− δ, t) = f(x, t) (1.5.1)

on the domain D = Ωx × Ωt = (0, 1)× (0, T ] for some fixed number T > 0.

Subject to the following initial and interval boundary conditions.
u(x, 0) = u0(x), xεωx

u(0, t) = φ(0, t), tεωt,

u(1, t) = ψ(1, t), tεωt.

(1.5.2)
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Chapter 2

Review of Related Literatures

2.1 Singular Perturbation Theory

Singular perturbation problem was first introduced byPrandtl (1905) during his talk on

fluid motion with small friction presented at the Third International Congress of Mathe-

maticians in Heidelberg,in which he demonstrated that fluid flow past over the body can

be divide in two regions,a boundary layer and outer region.However the term” Singular

perturbation” was first used by Friedrichs and Wasow (1946) in a paper presented at a

seminar on non-linear vibrations at New York University. The solution of singular pertur-

bation problems typically contain layers.

Prandtl (1905) originally introduced the term boundary layer,but this term came into more

general following the work of Wasow (1942). The study of many theoretical and applied

problems in science and technology leads to boundary value problem for singularly per-

turbed differential equations that have a multi-scale character.

However, most of the problems cannot be completely solved by analytic techniques. Conse-

quently,numerical Simulations has fundamental importance in gaining some useful insights

on the solutions of the singularly perturbed differential equations.Singularly perturbed prob-

lems arise in the modeling of various modern complicated processes such as fluid flow at

high Reynolds number,water quality problems in rivers networks,convective heat transport

problem with large perfect number drift diffusion equation of semiconductor device mod-

eling electromagnetic field problem in moving media, financial modeling of option pricing

turbulence model,simulation of oil extraction from under-ground reservoirs,theory of plates

and shells,atmospheric pollution, groundwater transport and chemical reactor theory.
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In the modeling of these processes,characterized by dominant convection and/or intensive

reactions,one can observe boundary and interior layers whose width depends on the pertur-

bation parameters can be arbitrarily small. On the other hand, the dominant itself,where

the problem in question is considered,can be extremely large, even unbounded,compared to

the available computational resources(especially in multidimensional problems for systems

of equations).

A complicated geometry of the domains, and or lack of sufficient smoothness (or compat-

ibility) of the problem data may result in singular solutions in which different parts are

their own specific scales. Standard numerical methods applied to such multi-scale problems

gives unsatisfactorily large errors,which make these methods inapplicable for practical use.

Thus,it is of considerable scientific interest to develop a solid mathematical theory and

specific computational methods for singularly perturbed multi-scale problems and related

problems arising from applications. perturbation theory is a subject which studies the effect

of small parameter in the mathematical model problems in DEs.

In Mathematics,more precisely in perturbation theory, a SPP is a problem containing a

small parameter that cannot be approximated by setting the parameter value to zero. Dur-

ing the last few years much progress has been made in the theory and in the computer

implementation of the numerical treatment of singular perturbation problems. These prob-

lems depend on a small positive parameter in such a way that the solution of varies rapidly

in some parts and varies slowly in some other parts. The main concern with singularly

perturbation problems is the rapid growth or decay of the solution in one or more narrow

”layer region(s) ”.

The term singular perturbation appears to have been the first coined by Friedrichs and

Wasow (1946). Waso continued to contribute to the area of asymptotic methods over many

years and his book ” Asymptotic expansion for ordinary differential equation ” Wasow

(1965),attracted much in the area of singular perturbed boundary value problems.
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2.2 Singularly Perturbed Partial Differential Equation

A singularly perturbed parabolic delay differential equation is a partial differential equa-

tion(PDE) in which the highest order derivative is multiplied by a small positive parameter

ε(0 < ε � 1). Developing numerical schemes for singularly perturbed parabolic delay dif-

ferential equation is very tough and the developed numerical schemes for this problem are

rare.

According to Roos et al. (2008) the basic application of these equations are in the Navier

Stoke’s equations,in modeling and analysis of heat and mass transfer process when the ther-

mal conductivity and diffusion coefficients are small and the rate of reaction is large.The

presence of a small parameter in the given differential equation leads difficulty to ob-

tain satisfactory numerical solutions.Thus,numerical treatment of the singularly perturbed

parabolic initial-boundary value problem is problematic because of the presence of bound-

ary layers in its solution.

Woldaregay and Duressa (2021) studied the following class of singularly perturbed parabolic

delay problem on the domain Ω = Ωx × Ωt = (0, 1)× (0, T ].

∂u(x, t)

∂t
− ε∂

2u(x, t)

∂x2
+ a(x)

∂u

∂x
(x− δ, t) + b(x)u(x− δ, t) = f(x, t) (2.2.1)

Subject to the following initial and boundary conditions.
u(x, 0) = u0(x), xεΩx

u(0, t) = φ(0, t), tεΩt,

u(1, t) = ψ(1, t), tεΩt

(2.2.2)

Where 0 < ε � 1 is singular perturbation parameter and δ is delay satisfying δ < ε . The

function a(x), b(x), f(x, t), u0(x),φ(x, t) andψ(1, t) are assumed to be sufficiently smooth

and bounded with b(x) ≥ b∗ > 0 , for some constantb∗.

The authors constructed a numerical method for a class of singularly perturbed parabolic

delay problem with a boundary turning point consisting of non standard finite difference

operator on fitted mesh to discretize space variable and θ-method for discretize the time

variable for a class of singularly perturbed parabolic delay problem with a boundary turn-

ing point. They proved that the method converge uniformly with respect to perturbation

parameter.
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Rai and Yadav (2021) considered a numerical method which consists of backward Euler

scheme for time discretization on uniform mesh and a combination of midpoint upwind and

central difference scheme for the space discretization on modified shishkin mesh. Further,

they increased the order of convergence in time direction by Richardson extrapolation for

singular perturbed delay parabolic convection diffusion problems with degenerate coeffi-

cient.

(Kumar and Kadalbajoo, 2012) numerical treated of singularly perturbed delay differential

equation of second order using B-spline collocation method. In this survey the author has

selected piecewise uniform mesh known as shishkin mesh which is adequate to handle sin-

gularly perturbed problems.

Remarks: Spline based methods provide more accurate results for singularly perturbed

parabolic delay differential equation with small delay, large delay and for the SPPDDE

with delay as well as advance.

(Yüzbaşı and Sezer, 2013) used an exponential collection method for finding solution of

second order singularly perturbed delay differential equations.

(File et al., 2013) presented a computational method to solve equation with negative shift

whose solution has boundary layer. In this scheme author reduced the second order SPDDE

to first order equation and then employed numerical integration and interpolations. Au-

thor claim that the available asymptotic expansion methods for solving singular perturbed

problems are difficult to apply as it is not easy to find appropriate asymptotic expansion in

the inner and outer regions and matching of the coefficients of the inner and outer solution

expansions is also a process that need skills.

(Swamy et al., 2015) proposed computational method for singularly perturbed delay differ-

ential equation of second order with twin layers or oscillatory behavior. Layer or oscillation

behavior of the delay differential equation discussed depending on sign of (a(x) + b(x)).

The layer behavior of the solution diminish as the delay increase and the solution exhibit

oscillation behavior.

In general, this survey indicates that the development of the solution methodologies to

solve equation has received very little attention from the research. Developing a sounding

computational methods for solving model problem in equations are still at the preliminar-

ily stage and it needs a lot of investigations. This gap initiates the researchers to consider

11



model problem in equation.

Therefore,the main purpose of this study is to construct implicit Euler method to dis-

cretize the time variable and cubic spline in tension to discretize the space variable to solve

singularly perturbed parabolic problems with Dirichlet boundary condition.
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Chapter 3

Research Design and Methodology

3.1 Study Area and Period

This study was conducted under mathematics department, college of natural science in

Salale University from January 2023 to June 2023

3.2 Study Design

This study employed both documentary review design and experimental design.

3.3 Source of Informations

The relevant source of information for this study are books and published articles.

3.4 Mathematical Procedures

In order to achieve the stated objectives, the study was followed the following mathematical

procedures:

1. Defining the problem.

2. Formulating numerical scheme for the problem.

3. Establishing the stability and convergence analysis for the formulated scheme.

4. Developing an algorithm and writing MATLAB code for the presented scheme.

5. Validating the scheme using numerical examples.

13



6. Presenting the results using appropriate presentation (using tables, graphs).

7. Discussing and providing conclusion.

14



Chapter 4

Description of Numerical Method
and Analysis

In this chapter description of the problem, properties of continuous problem, formulation

of the numerical method, stability and convergence analysis, numerical examples and dis-

cussion of the numerical results are presented.

4.1 Description of the Problem

In this study, we consider the following SPPDDE’s of the form

∂u(x, t)

∂t
− ε∂

2u(x, t)

∂x2
+ a(x)

∂u

∂x
(x− δ, t) + b(x)u(x− δ, t) = f(x, t) (4.1.1)

on the domain D = Ωx ×Ωt = (0, 1)× (0, T ] for some fixed number T > 0 with initial and

interval boundary conditions.
u(x, 0) = u0(x), x ∈ Ωx = (0, 1),

u(0, t) = φ(0, t), t ∈ Ωt = (0.T ],

u(1, t) = ψ(1, t), t ∈ Ωt,

(4.1.2)

where 0 < ε� 1 is singular perturbation parameter and δ is delay satisfying δ < ε. The

function a(x), b(x), f(x, t), u0(x),φ(x, t) and ψ(1, t) are assumed to be sufficiently smooth

and bounded with b(x) ≥ b∗ > 0 , for some constant b∗.

Solution of (4.1.1) and (4.1.2) exhibits boundary layer Gupta et al. (2018) and position of

the layer depends on the conditions:If a(x) < 0 left layer exists. If a(x) > 0 right layer

exists. For the case of δ < ε, using Taylor’s series approximation for the terms containing

delay u(x− δ, t) and ux(x− δ, t) is valid Tian (2002). Since we assumed δ < ε , we approx-

imate (4.1.1) and (4.1.2) by

15



∂u(x, t)

∂t
− cε(x)

∂2u(x, t)

∂x2
+ p(x)

∂u(x, t)

∂x
+ b(x)u(x, t) = f(x, t). (4.1.3)

Subject to the initial and boundary conditions.
u(x, 0) = u0(x), x ∈ Ωx = (0, 1),

u(0, t) = φ(0, t), t ∈ Ωt = (0.T ],

u(1, t) = ψ(1, t), t ∈ Ωt,

(4.1.4)

where cε(x) = ε− δ2

2
b(x) + δa(x) and p(x) = a(x)− δb(x). For small values of δ, (4.1.1) and

(4.1.2) within (4.1.3) and (4.1.4) are asymptotically equivalent. We assume

0 < cε(x) ≤ ε2 − δ2

2
b∗ + δa∗ = cε where b∗ and a∗ are the lower bound for b(x) and a(x) re-

spectively. We assume also p(x) ≥ p∗ > 0, implies occurrence of a boundary layer near x=1.

4.2 Properties of Continuous Problem

Lemma 4.2.1. (Continuous maximum principle.) Let z be a sufficiently smooth function
defined on D which satisfies z(x,t) ≥ 0, (x, t) ∈ ∂D and Lz(x,t) ≥ 0, (x, t) ∈ D. Then implies
that z(x,t) ≥ 0,∀(x, t) ∈ D

Proof. Let (x∗, t∗) be such that z(x∗, t∗) = min(x,t)∈D z(x, t) and suppose that z(x∗, t∗) < 0.
It is clear that (x∗, t∗) /∈ ∂D. From the theory in extrema calculus, since z(x∗, t∗) =
min(x,t)∈D which implies zx(x

∗, t∗) = 0, zt(x
∗, t∗) = 0 ,and zxx(x

∗, t∗) ≥ 0 and implies that
Lz(x∗, t∗) < 0, (x, t) ∈ D which is contradiction to the assumption that made above

Lz(x∗, t∗) ≥ 0, (x, t) ∈ D.

Hence, z(x∗, t∗) ≥ 0,∀(x, t) ∈ D.

Lemma 4.2.2 ( Uniform Stability Estimate.). Let u(x,t) be the solution of the problem in
eq.(4.1.3) and eq.(4.1.4).Then, we obtain the bound

|u(x, t)| ≤ ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|}

.

Proof. We define two barrier functions ϑ±(x, t) as

ϑ±(x, t) = ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|} ± u(x, t).

At the initial value, we have

ϑ±(x, 0) = ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|} ± u(x, t) ≥ 0.
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On the boundaries, we have

ϑ±(0, t) = ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|} ± u(0, t) ≥ 0.

ϑ±(1, t) = ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|} ± u(1, t) ≥ 0.

and for differential operator L

ϑ±(x, t) = ϑ±t (x, t)− cεϑ±xx(x, t) + p(x)ϑ±x (x, t) + q(x)ϑ±(x, t)

= (0± ut(x, t))− cε (0± uxx(x, t)) + p(x) (0± ux(x, t))
+q(x)

(
ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|} ± u(x, t)

)
= q(x)ζ−1 ‖f‖+ max {|u0(x)| , |φ(0, t)| , |ψ(1, t)|} ± f(x, t)

≥ 0, sinceq(x) ≥ ζ > 0 which implies Lϑ±(x, t) ≥ 0.
Hence by using maximum principle, we obtain ϑ±(x, t) ≥ 0,∀(x, t) ∈ D.

4.3 Formulation of the Numerical Method

We derive the numerical method employing the implicit Euler method and the cubic spline

in tension method for the time and space variable derivative, respectively.

Consider the partition of the solution domain [0,1] × [0,T].

DM
τ ={jτ, 0 < j ≤M} and DN

l = {il, 0 < i ≤ N} with temporal and spatial mesh sizes

τ = T/M and l = 1/N ,respectively.Here M and N denote the number of nodal points in

the temporal and spatial directions.

4.3.1 Time discretization

To get a uniform partition ΩM
t = tj = 4t , j= 0,1,2,...,M of the domain Ωt = [0, T ] in the

time direction,we divide [0,T] into M mesh subintervals with step length 4t = T/M at (j

+1)th time interval. Let uj+1(x) be the approximation of u(x, tj+1) at (j + 1)th time level.

Then we discretized the (4.1.1) by using implicit Euler method as

uj+1(x)−uj(x)
4t - cε(x)∂

2uj+1(x)
∂x2

+ p(x)∂u
j+1(x)
∂x

+ b(x)uj+1(x) =f j+1(x)

−cε(x)∂
2uj+1(x)
∂x2

+ p(x)∂u
j+1(x)
∂x

+ (b(x) + 1
4t)u

j+1(x) = f j+1(x) + uj(x)
4t ).

Then we obtain the following equation:

− cε(x)
∂2uj+1(x)

∂x2
+ p(x)

∂uj+1(x)

∂x
+ q(x)uj+1(x) = gj+1(x) (4.3.1)

Where q(x) = b(x) + 1
4t and gj+1(x) = f j+1(x) + uj(x)

4t .
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To establish the convergence, we represent the local truncation error which is denoted

by LTE as ej+1 such that

ej+1 = Luj+1(x)− Zi

,

where uj+1 is the approximate solution of(4.1.1) andZi = gj+1(x) also the global error is

the sum of LTE at each time level i.e...,

Ej =
∑j

k=1 ek

The following Lemmas estimate the bound for LTE and GTE

Lemma 4.3.1. Having
∣∣∣∂ku(x,t)

∂tk

∣∣∣ ≤ C,∀(x, t)εD,k=0,1,2

The local error estimate in the temporal direction is given by

‖ej+1‖∞ ≤ C(4t)2, for some constant C

.

Proof. Using the series expansion to u (x, tj+1),we obtain

u (x, tj+1) = u (x, tj) + M tut (x, tj) + o
(
(4t)2

)
By substitution we obtain

u (x, tj+1)− u (x, tj)

4t
= ut(x, tj) + o((4t)2)

= − (−cεu(x, tj)xx + p(x)u(x, tj)x + q(x)u(x, tj)− f(x, tj)) + o((4t)2)

since error satisfies the differential equations. So the local error satisfies the semi-discrete
operator

L4tej+1 = o
(
(4t)2

)
, ej+1(0) = 0 = ej+1(1)

Hence, applying the maximum principle, we obtain∥∥ej+1
∥∥ ≤ C (4)2

Next, we need to give the bound for the global error of the semi discretization. Let

denote TEj+1 be the global error estimate up to the (j + 1)th time step.
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Lemma 4.3.2. Let Ej = u(x, tj)−u(x, tj) be the global error estimate in the time direction.
Then the following bound holds

‖Ej‖∞ ≤ C(4t)

Proof. From Lemma 4.3.1 it follows that
‖Ej‖∞ = ||

∑j
k=1 ||∞ ≤ ||e1||∞ + ||e2||∞ + ...+ ||ej||∞

≤ C(4t) for some constant C.

4.3.2 Space Discretization

In this section,we introduce cubic spline in tension method on shishkin mesh for the solu-

tion of eq.(4.1.1). Shishkin meshes are piecewise-uniform mesh which condense more mesh

points in the boundary layer as ε → 0. Here we approximate the resulting eq.(4.1.1) by

applying the cubic spline in tension method as described below.

A function Sj+1(x, τ) ∈ C2[0, 1] which interpolates uj+1(x) at the mesh points xi,i=

0,1,2,...,N depends on a parameter τ > 0 reduces to cubic spline in [0,1] as τ → 0 is

called parametric cubic spline function. In [xi, xi+1], the parametric cubic spline function

Sj+1(x, τ) = Sj+1(x) satisfies the differential equation Pramod Chakravarthy et al. (2017);

∂2Sj+1(x)

∂x2
+ τSj+1(x) =

[
∂2Sj+1(xi)

∂x2
+ τSj+1(xi)

](
xi+1 − x

l

)
+[

∂2Sj+1(xi+1)

∂x2
+ τSj+1(xi+1)

](
x− xi
l

)
, (4.3.2)

where Sj+1(xi) = uj+1
i and τ > 0 is known to be cubic spline in tension.

Solving eq.(4.3.2) we obtain

Sj+1(x) = Ae
λ
l
x +Be

λ
l
x +

[
Zj+1
i − τuj+1

i

τ

](
x− xi+1

l

)
+
[
Zj+1
i+1 − τu

j+1
i+1

](xi − x
l

)
.

(4.3.3)

The arbitrary constants A and B can be determined using interpolate conditions.

Sj+1(xi+1) = uj+1
i+1 , Sj+1(xi) = uj+1

i

putting λ = lτ 1/2 and Zj+1
k = ∂2Sj+1(xk)

∂x2
, k = i, i± 1,we have
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Sj+1(x) =
l2

λ2sinhλ

[
Zj+1
i+1 sinh

λ(x− xi)
l

+ Zj+1
i sinh

λ(xi+1 − x)

l

]
− l2

λ2

[(
x− xi
l

)(
Zj+1
i+1 −

λ2

l
uj+1
i+1

)
+

(
xi+1 − x

l

)(
Zj+1
i − λ2

l
uj+1
i

) ]
(4.3.4)

Differentiating eq.(4.3.4) and taking x→ xi, we obtain

∂Sj+1(x+
i )

∂x
=
uj+1
i+1 − u

j+1
i

l
− l

λ2

[(
1− λ

sinhl

)
Zj+1
i+1 − (1− λcothλ)Zj+1

i

]
(4.3.5)

Proceeding similarly in the interval (xi−1, xi),we get

∂Sj+1(x−i )

∂x
=
uj+1
i+1 − u

j+1
i

l
+

l

λ2

[
− (1− λcothλ)Zj+1

i +

(
1− λ

sinhλ

)
Zj+1
i+1

]
(4.3.6)

Equating eq.(4.3.5) and eq.(4.3.6) at xi, we obtain

uj+1
i+1 − u

j+1
i

l
+

l

λ2

[
− (1− λcothλ)Zj+1

i +

(
1− λ

sinhλ

)
Zj+1
i+1

]
=
uj+1
i+1 − u

j+1
i

l
− l

λ2

[(
1− λ

sinhl

)
Zj+1
i+1 − (1− λcothλ)Zj+1

i

]
(4.3.7)

Rearranging, we get the following tridiagonal system

λ1Z
j+1
i+1 + 2λ2Z

j+1
i + λ1Z

j+1
i−1 =

ui+1 − 2ui + ui−1

l2
, i = 1, 2, ..., N − 1. (4.3.8)

Where λ1 = 1
λ2

(
1− λ

sinhλ

)
, λ2 = 1

λ2
(λcothλ− 1)

For the choice of parameters λ1 + λ2 = 1/2 is consistent and suitable for solving the given

differential equations.

Equation (4.3.1) can be written as, for k=i, i± 1

cε(x)
∂2uj+1(xk)

∂x2
= p(x)

∂uj+1(xk)

∂x
+ q(x)uj+1(xk)− gj+1(xk), (4.3.9)

where ∂uj+1(xk)
∂x

is approximated by

∂uj+1
i−1

∂x
=
−uj+1

i+1+uj+1
i −3uj+1

i−1

2l
,

∂uj+1
i

∂x
=

uj+1
i+1−u

j+1
i−1

2l
,

∂uj+1
i+1

∂x
=

3uj+1
i+1−4uj+1

i +uj+1
i−1

2l
}

(4.3.10)
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Taking eq.(4.3.10) into eq.(4.3.9),we obtain

cε(xi−1)
∂2uj+1

i−1

∂x2
= p(xi−1)

(
−uj+1

i+1+4uj+1
i −3uj+1

i−1

2l

)
+ q(xi−1)uj+1

i−1 − g
j+1
i−1 ,

cε(xi)
∂2uj+1

i

∂x2
= p(xi)

(
uj+1
i+1−u

j+1
i−1

2l

)
+ q(xi)u

j+1
i − gj+1

i ,

cε(xi+1)
∂2uj+1

i+1

∂x2
= p(xi+1)

(
3uj+1
i+1−4uj+1

i +uj+1
i−1

2l

)
+ q(xi+1)uj+1

i+1 − g
j+1
i+1 ,

(4.3.11)

putting eq.(4.3.11) into eq.(4.3.8), we obtain

λ1

cε

[
pi−1

(
−uj+1

i+1 + 4uj+1
i − 3uj+1

i−1

2l

)
+ qi−1u

j+1
i−1 − g

j+1
i−1

]
+2λ2

cε

[
pi

(
uj+1
i+1−U

j+1
i−1

2l

)
+ qiu

j+1
i − gj+1

i

]

+
λ1

cε

[
pi+1

(
3uj+1

i+1 − 4uj+1
i + uj+1

i−1

2l

)
+ qi+1u

j+1
i+1 − g

j+1
i+1

]
=

(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

l2

)
multiplying both sides by cε,we get

cε

(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

l2

)
=

(
−3λ1pi−1

2l
+ λ1qi−1 −

λ2pi
l

+
λ1pi+1

2l

)
uj+1
i−1

+

(
2λ1pi−1

l
+ 2λ2qi −

2λ1pi+1

l

)
uj+1
i +

(
−λ1pi−1

2l
+
λ2qi
l

+
3λ1pi+1

2l
+ λ1qi+1

)
uj+1
i+1

− λ1g
j+1
i−1 − 2λ2g

j+1
i + λ1g

j+1
i+1 (4.3.12)

To handle the effect of ε a constant fitting factor γ (ρ) is multiplied on the term containing

ε as

γ (ρ) cε

(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

l2

)
=

(
−3λ1pi−1

2l
+ λ1qi−1 −

λ2pi
l

+
λ1pi+1

2l

)
uj+1
i−1

+

(
2λ1pi−1

l
+ 2λ2qi −

2λ1pi+1

l

)
uj+1
i +

(
−λ1pi−1

2l
+
λ2qi
l

+
3λ1pi+1

2l
+ λ1qi+1

)
uj+1
i+1

− λ1g
j+1
i−1 − 2λ2g

j+1
i + λ1g

j+1
i+1 . (4.3.13)

Multiplying eq.(4.3.13) by l and taking the limit as l→ 0,we get

lim
l→0

γ (ρ) cε

(
−uj+1

i+1 + 4uj+1
i − 3uj+1

i−1

2l

)
− p (0)

2

(
uj+1
i+1 − u

j+1
i1

)
= 0. (4.3.14)

For the problems of with the layer at the right end of the interval from the theory of singular

perturbations,the solution of eq.(4.3.1) is of the form O’Malley (1991).

uj+1(x) ≈ uj+1
0 (x) +

p(1)

p(x)

(
uj+1(2)− uj+1

0 (x)
)
exp

(
−p(x)

1− x
cε

)
+ o (ε) . (4.3.15)
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where uj+1
0 (x) is the solution of the reduced problem

p(x)
∂uj+1

0 (x)

∂x
+ q(x)uj+1

0 (x) = gj+1(x)

with

uj+1(1) = uj+1(2)

Taking Taylor’s series expansion for p(x) about the point x=1 and restricting to their first

term eq.(4.3.15) becomes

uj+1(x) ≈ uj+1
0 (x) +

(
uj+1(2)− uj+1

0 (x)
)
exp

(
−p(1)

1− x
cε

)
+ o (ε) (4.3.16)

now from eq.(4.3.16),we have

where ρ = 1
cε

, plugging the above equations into eq.(4.3.14) gives the required fitting factor

γ (ρ) =
p(0)ρ

2
coth

(
p(1)ρ

2

)
(4.3.17)

Finally,from eq.(4.3.13) and eq.(4.3.17),we get

EN,M
ε uj+1

i = Hj+1
i , i = 1, 2, ..., N − 1 (4.3.18)

where

lim
l→0

U j+i
(il) ≈ uj+1

0 (0) +
(
uj+1(2)− uj+1

0 (1)
)
exp

(
−p(1)

(
1

cε
− iρ

))
+ o (ε) ,

lim
l→0

uj+i(i−1)l ≈ uj+1
0 (0) +

(
uj+1(2)− uj+1

0 (1)
)
exp

(
−p(1)

(
1

cε
− iρ+ ρ

))
+ o (ε) ,

lim
l→0

U j+i
(i+1)l ≈ uj+1

0 (0) +
(
uj+1(2)− uj+1

0 (1)
)
exp

(
−p(1)

(
1

cε
− iρ− ρ

))
+ o (ε) ,



EN,M
ε uj+1

i = X−i +Xc
i u

j+1
i +X+

i u
j+1
i+1

X−i = −γ(ρ)cε
l2
− 3λ1pi−1

2h
− λ2pi

l
+ λ1pi+1

2h
+ λ1qi−1,

Xc
i = −2γ(ρ)cε

l2
− 2λ1pi−1

l
+ 2λ2qi + 2λ1pi+1

l
,

X+
i = −γ(ρ)cε

l2
− λ1pi−1

2l
+ λ2pi

l
+ 3λ1pi+1

2l
+ λ1qi+1,

Hj+1
i = λ1g

j+1
i−1 + 2λ2g

j+1
i + λ1g

j+1
i+1
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For sufficiently small l,the above matrix is non singular and |Xc
i | ≥

∣∣X−i ∣∣ +
∣∣X+

i

∣∣ (i.e..,the

matrix are diagonally). Hence,by Nichols (1989),the matrix is M-matrix and have an in-

verse.Therefore,the system of equations can be solved by matrix inverse.

4.4 Analysis of the Method

In this section,we demonstrate convergence analysis through error analysis.

4.4.1 Convergence Analysis

Lemma 4.4.1. (Discrete maximum principle)

Assume that the mesh function Zj+1(xi) satisfies Zj+1(x0) ≥ 0 and Zj+1(xN) ≥ 0. If

Lh,4tZj+1(xi) ≥ 0 for 1 ≤ i ≤ N − 1, then Zj+1(xi) ≥ 0

Proof. Let choose k such that Zj+1(xk) = minxiZ
j+1(xi) ,1 ≤ i ≤ N − 1. If Zj+1(xk) ≥

0, the proof completed. We can see that Zj+1(xk+1) − Zj+1(xk) ≥ 0 and Zj+1(xk) −
Zj+1(xk−1) ≤ 0.Then we obtain Lh,4tZj+1(xk) < 0 which contradicts Lh,4tZj+1(xk) < o.
Hence the assumption is wrong. We conclude that Zj+1(xi) ≥ 0,∀i, 0 ≤ i ≤ N.

Lemma 4.4.2. ( Discrete Uniform Stability)

The solution of uj+1
i of eq.(4.3.18) at (j + 1)th time level and Γ = min0≤i≤N {qi},where

Γ is some positive constant is bounded as∥∥uj+1
i

∥∥ ≤ ‖EN,Mε uj+1
i ‖

Γ
+max

{∣∣uj+1
0

∣∣ , ∣∣uj+1
N

∣∣}
Proof. Let define barrier functions

(
βj+1
i

)±
= V ± uj+1

i ,

whereV =
‖EN,Mε uj+1

i ‖
Γ

+max
{∣∣uj+1

0

∣∣ , ∣∣uj+1
N

∣∣} on the boundary points,we obtain(
βj+1
i

)±
= u± uj+1

0 =
‖EN,Mε uj+1

i ‖
Γ

+ max
{∣∣uj+1

0

∣∣ , ∣∣uj+1
N

∣∣}± uj+1
2 (N) ≥ 0.
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Now, on the discretized spatial domain ΩN
l , we have

EN,M
ε

(
βj+1
i

)±
= EN,M

ε

(
V ± uj+1

i

)
=

(
−γ(ρ)cε

l2
− 3λ1pi−1

2l
− λ2pi

l
+
λ1pi+1

2l
+ λ1qi−1

)(
V ± uj+1

i−1

)
+

(
2γ(ρ)cε

l2
− 2λ1pi−1

l
+ 2λ2qi +

2λ1pi+1

l

)(
V ± U j+1

i

)
+

(
−γ(ρ)cε

l2
− λ1pi−1

2l
+
λ2pi
l

+
3λ1pi+1

2l
+ λ1qi+1

)(
V ± uj+1

i+1

)
.

= ±
(
−γ(ρ)cε

l2
− 3λ1pi−1

2l
− λ2pi

l
+
λ1pi+1

2l
+ λ1qi−1

)(
uj+1
i−1

)
±
(

2γ(ρ)cε

l2
− 2λ1pi−1

l
+ 2λ2qi +

2λ1pi+1

l

)(
uj+1
i

)
±
(
−γ(ρ)cε

l2
− λ1pi−1

2l
+
λ2pi
l

+
3λ1pi+1

2l
+ λ1qi+1

)(
uj+1
i+1

)
+ (λ1qi−1 + 2λ2qi + λ1qi+1)V, ,

±
(
λ1g

j+1
i−1 + 2λ1g

j+1
i + λ1g

j+1
i+1

)
+ (λ1qi−1 + 2λ2qi + λ1qi+1)V

= (λ1qi−1 + 2λ2qi + λ1qi+1)

(∥∥EN,M
ε uj+1

i

∥∥
Γ

)
+max

{∣∣uj+1
0

∣∣ , ∣∣uj+1
N

∣∣}
∓
(
λ1g

j+1
i−1 + 2λ1g

j+1
i + λ1g

j+1
i+1

)
≥ 0, sinceq(xi) ≥ Γ > 0

on applying lemma (4.4.1),we obtain
(
βj+1
i

)± ≥ 0,for all xi ∈ ΩN
l .Hence,the desired bound

is obtained.

Lemma 4.4.3. The local truncation error in space discretization of the discrete problem
eq.(4.3.18) is given as

maxij
∣∣uj+1(xi)− uj+1

i

∣∣ ≤ cl2

where c is a constant independent of ε and l

Proof. From the truncation error of eq (4.3.10),we have

e′i−1 = ∂uj+1(xi−1)
∂x

− ∂uj+1
i+1

∂x
= l2

3
∂3uj+1(xi) + l3

12
∂4uj+1(xi)

∂x4
+ l4

30
∂5uj+1(pi)

∂x5

e′i = ∂uj+1(xi)
∂x

− ∂uj+1
i

∂x
= − l2

6
∂2uj+1(xi)

∂x3
− l4

120
∂5uj+1(pi)

∂x5

e′i+1 = ∂uj+1(xi+1)
∂x

− ∂uj+1
i+1

∂x
= l3

3
∂3uj+1(xi)

∂x3
+ l3

12
∂4uj+1(xi)

∂x4
+ l3

30
∂5uj+1(pi)

∂x5

(4.4.1)
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where xi−1 < ψ < xi+1.Substituting

ΓcεZj+1
k = pk

∂uj+1
k

∂x
qku

j+1
k − gj+1

k , k = i, i± 1 into eq.(4.2.8) , we get

γcε
(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

)
= l2λ1

(
pi−1

∂uj+1
i−1

∂x
+ qi−1u

j+1
i−1 − g

j+1
i−1

)

+ 2l2λ2

(
pi
∂uj+1

i

∂x
+ qiu

j+1
i − gj+1

i

)
+ l2λ1

(
pi+1

∂uj+1
i+1

∂x
+ qi+1u

j+1
i+1 − g

j+1
i+1

)
. (4.4.2)

Considering the corresponding exact solution to eq.(4.4.2) ,we have

γcε
(
uj+1(xi−1)− 2uj+1(xi) + uj+1x(i+1)

)
= l2λ1p(xi−1)

∂uj+1(xi−1)

∂x

+ l2λ1

(
q(xi−1)uj+1(xi−1)− qj+1(xi−1)

)
+ 2l2λ2

(
p(xi)

∂uj+1(xi)

∂x
+ q(xi)u

j+1(xi)

)
− 2l2λ2g

j+1(xi) + l2λ1

(
p(xi+1)

∂uj+1(xi+1)

∂x
+ q(xi+1)uj+1(xi+1)− gj+1(xi+1)

)
.

(4.4.3)

Subtracting eq.(4.4.2) from eq.(4.4.3) and denoting
ek = uj+1(xk)− uj+1

k for k=i,i± 1 we arrive at

(
γcε− l2λ1qi−1

)
ei−1 +

(
−2γcε− 2l2λ2qi

)
ei +

(
γcε− l2λ1qi+ 1

)
ei+

= l2 (λ1pi−1e′i−1 + 2λ2pie′i + λ1pi+1e′i+1) . (4.4.4)

Inserting eq.(4.4.1) into eq.(4.4.4),we obtain(
γcε− l2λ1qi−1

)
ei−1 +

(
−2γcε− 2l2λ2qi

)
ei +

(
γcε− l2λ1qi+ 1

)
ei+

=
l4

3
(λ1pi−1 − λ2pi + λ1pi+1)

∂3uj+1(xi)

∂x3
+
l5

12
(−λ1pi−1 + λ1pi+1)

∂4uj+1(xi)

∂x4

+
l6

60
(2λ1pi−1 − λ2pi + 2λ1pi+1)

∂5U j+1(pi)

∂x5
(4.4.5)

Using the expression pi−1 = pi − lp′i + l2

2!
p(2)pi and

pi+1 = pi + lp′i + l2

2!
p(2)pi in eq.(4.4.5),we have(

γcε− l2λ1qi−1

)
ei−1 +

(
−2γcε− 2l2λ2qi

)
ei +

(
γcε− l2λ1qi+ 1

)
ei+ = Ti(l) (4.4.6)

where Ti(l) = l4

3
(2λ1 − λ2) pi

∂3uj+1(xi)
∂x3

+ o(l6)
Therefore,Ti(l) = o(l4) for the choice of parameters λ1 + λ2 = 1/2
Equation (4.4.6) can be written as a matrix form;

(Λ− η)E = V (4.4.7)

where Λ = trid (−γcε, 2γcε,−γcε) , η = trid (l2λ1qi−1, l
2λ1qi, l

2λ1qi+1),
E=[e1, e2, ..., eN−1]T and V = [−V1(l),−V2(l), ...,−VN−1(l)]T
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following Adivi Sri Venkata and Palli (2017) ,it cn show that

‖E‖ ≤ c

l2
× o(l4) = C(l2) (4.4.8)

where c is constant, independent of l and ε.

Theorem 4.1: Let u(x,t) be solution of problem (4.4.4) at each grid point(xi, tj+1) and

uj+1i be its approximate solution obtained by the proposed scheme given in eq.(4.3.18).Then

the error estimate for the fully discrete method is given by

max
ij

∣∣u(xi, tj+1)− uj+1
i

∣∣ ≤ c
(
(τ) + l2

)
Proof. From the triangular inequality,we have

max
ij

∣∣u(xi, tj+1)− uj+1
i

∣∣ = max
ij

∣∣u(xi, tj+1)− uj+1(xi) + uj+1(xi)− uj+1
i

∣∣
≤ max

ij

∣∣u(xi, tj+1)− uj+1(xi)
∣∣+ max

ij

∣∣uj+1(xi)− ui
∣∣ (4.4.9)

Theorem.4.2.(Main Convergence Theorem)Let u(xi.tj) be the solution of continuous

problem and U j
i be the solution of discrete problem, then the parameter uniform error

estimate is given by∣∣U j
i − u(xi, tj)

∣∣ ≤ C
(
4t2 +N−2 ln2N

)
,

where C is a constant independent of ε and the mesh parameters N and 4t

4.5 Numerical Examples,Results and Discussions

In this section, we carry out numerical experiment in order to corroborate the applicability

of the proposed method.Since the exact solutions for the given examples are unknown, we

use the double mesh principle to calculate the absolute error.Two model examples have

been presented to illustrate the efficiency of proposed method. In both cases, we performed

the numerical experiments by taking λ1 = 1e−010 and λ2 = 4.999999999e−01.As the exact

solutions of the considered examples are not known, we calculate the maximum point-wise

error for each ε and δ. For each ε,we can determine the maximum point-wise errors and

rate of convergence using the following formula defined as

EN,M
ε,δ = max

0≤i≤N ;[0,T ]

∣∣uN,M(xi, tj)− u2N,2M(xi, tj)
∣∣
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and

rN,Mε,δ = log2

(
EN,M
ε,δ

E2N,2M
ε,δ

)
,

where uN,M(xi, tj) denote the numerical solution obtained at (N,M) mesh points whereas

uN,M(xi, tj) denote the numerical solution at (2N,2M) mesh points.The uniform error and

uniform rate of convergence are completed by the following formulas.

EN,M = max
∣∣∣EN,M

ε,δ

∣∣∣
and

rN,M = log2

(
EN,M

E2N,2M

)

Example 4.5.1. a(x) = 2− x2,b(x) = x2 + 1 + cos(πx) and f(x) = 10t2 exp(−t)(1− x) for
u0(x) = 0,0 ≤ x ≤ 1 and φ(x, t) = 0, x ∈ [−δ, 0], ψ(1, t) = 0 for final time T=1.

Example 4.5.2. a(x) = 2−x2, b(x) = 3−x and f(x) = exp(t) sin (πx(1− x)) for u0(x) =
0,0 ≤ x ≤ 1 and φ(x, t) = 0, x ∈ [−δ, 0], ψ(1, t) = 0 for final time T=1.

Table 4.1: Maximum absolute error of 4.5.1 for M = N

ε ↓ N=16 N=32 N=64 N=128 N=256 N=512
Present Method
10−0 1.3376e-04 5.8444e-05 2.7169e-05 1.3081e-05 6.4159e-06 3.1770e-06
10−2 8.6393e-03 3.0718e-03 9.1610e-04 2.6734e-04 8.3377e-05 2.8965e-05
10−4 1.0106e-02 5.3075e-03 2.7223e-03 1.3786e-03 6.9369e-04 3.4723e-04
10−6 1.0106e-02 5.3074e-03 2.7223e-03 1.3785e-03 6.9369e-04 3.4795e-04
10−8 1.0106e-02 5.3074e-03 2.7223e-03 1.3785e-03 6.9369e-04 3.4795e-04
10−10 1.0106e-02 5.3074e-03 2.7223e-03 1.3785e-03 6.9369e-04 3.4795e-04
E−N,M 1.0106e-02 5.3074e-03 2.7223e-03 1.3785e-03 6.9369e-04 3.4795e-04
rN,M 0.9291 0.9632 0.9817 0.9907 0.9954 -

Results in Woldaregay and Duressa (2021) Before Richardson Extrapolation
10−4 1.4608e-02 8.1605e-03 4.3079e-03 2.2125e-03 - -
10−6 1.4608e-02 8.1600e-03 4.3077e-03 2.2124e-03 - -
10−8 1.4608e-02 8.1600e-03 4.3077e-03 2.2124e-03 - -
10−10 1.4608e02 8.1600e03 4.3077e03 2.2124e03 - -
E−N,M 1.4608e-02 8.1600e-03 4.3077e-03 2.2124e-03 - -
rN,M 0.8401 0.9217 0.9613 - - -
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Table 4.2: Maximum absolute error of 4.5.2 for M = N

ε ↓ N=16 N=32 N=64 N=128 N=256 N=512
Present Method
10−0 2.1094e-03 1.1690e-03 6.2039e-04 3.1983e-04 1.6238e-04 8.1820e-05
10−2 8.3012e-03 3.8273e-03 1.7262e-03 8.1359e-04 3.9597e-04 1.9558e-04
10−4 9.0345e-03 6.2292e-03 3.5568e-03 1.9435e-03 1.0263e-03 5.2733e-04
10−6 9.0345e-03 6.2291e-03 3.5567e-03 1.9435e-03 1.0264e-03 5.2908e-04
10−8 9.0345e-03 6.2291e-03 3.5567e-03 1.9435e-03 1.0264e-03 5.2908e-04
10−10 9.0345e-03 6.2291e-03 3.5567e-03 1.9435e-03 1.0264e-03 5.2908e-04
E−N,M 9.0345e-03 6.2291e-03 3.5567e-03 1.9435e-03 1.0264e-03 5.2908e-04
rN,M 0.5364 0.8084 0.9188 0.92106 0.9560 -

Results in Woldaregay and Duressa (2021)Before Richardson Extrapolation
10−4 9.2814e-03 6.5095e-03 3.8026e-03 2.0167e-03 - -
10−6 9.2806e-03 6.5094e-03 3.8028e-03 2.0170e-03 - -
10−8 9.2806e-03 6.5094e-03 3.8028e-03 2.0170e-03 - -
10−10 9.2806e-03 6.5094e-03 3.8028e-03 2.0170e-03 - -
E−N,M 9.2814e03 6.5095e03 3.8028e03 2.0170e03 - -
rN,M 0.5118 0.7755 0.9149 - -
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(b) ε = 10−10, N = M = 128

Figure 4.1: Numerical solution of Example 4.5.1 for N = M = 128

Solution of example (4.5.1) and (4.5.2) exhibits a right boundary layer. As one observes

in figures above,as the perturbation parameter, ε goes small; the boundary layer formation

becomes more visible. In Tables(4.1) and (4.2),the maximum absolute error, the uniform

error and the uniform rate of convergence of the scheme is given for different values of ε

and mesh numbers.The calculated EN,M
ε,δ , rN,Mε,δ , EN,M , rN,M for the test examples (4.5.1)

and (4.5.2) with different values of N,M,ε and δ are presented in tables (4.1) and (4.2).From

these tables,we can easily see the maximum absolute error decrease as the step sizes decrease
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(b) ε = 10−10, N = M = 128

Figure 4.2: Numerical solution of Example 4.5.2 for N = M = 128

for all values of ε, which reveals an ε-uniform convergence of the proposed algorithm.The

numerical results show that the proposed method gives more accurate than methods in

Woldaregay and Duressa (2021) from the figures,one can observe that as ε goes small

strong boundary layer is created near x=1. As the size of δ increases,the thickness of layer

increases. The numerical results computed for example (4.5.1) are displays in table (4.1).

Also comparisons of the present method with the methods in the literatures are presented

in table (4.1) for example (4.5.1).From this table, it can be observed that the proposed

method is accurate than the others in terms of parameter uniform error estimates as well

as the order of convergence.Table (4.2) displays numerical results for example (4.5.2) and

comparison of ε - uniform maximum point wise errors and corresponding ε-uniform order

of of convergence between present result and the method in the literature.

Figure (4.1a), provides the graph of numerical solution of example (4.5.1) for ε = 100 and

N=M=128. In Figure (4.1b), provides the graph of numerical solution of example (4.5.1)

for ε = 10−10 and N=M=128. In Figure (4.2a), provides the graph of numerical solution

of example (4.5.2) for ε = 100 and N=M=128. In Figure (4.2b), provides the graph of

numerical solution of example (4.5.2) for ε = 10−10 and N=M=128.
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Chapter 5

Conclusion And Recommendation

5.1 Conclusion

In this thesis,we propose fitted numerical scheme for solving singularly perturbed parabolic

delay differential equation involving small delay. The method comprises an implicit Euler

method to discretize the time variable on uniform mesh and cubic spline in tension method

in space variable. Some properties of discrete problems that ensured the stability of the

method were presented and used to analyze the convergence.This analysis resulted in both

the space and time variables.Stability of the scheme is investigated using construction of

barrier function for the solution bound. Uniform convergence of the scheme is proved.

Applicability of of the scheme is investigated by considering two test examples. Effects of

the perturbation parameter on the solution is shown using figures and tables.The scheme

is accurate,stable and uniformly convergent.

5.2 Recommendation

In this thesis,fitted numerical scheme was developed to solving singularly perturbed parabolic

delay differential equation problem.In the future, the method used in this thesis can be ex-

tended to other types of time dependent singularly perturbed problems.

30



Bibliography

Adivi Sri Venkata, R. K. and Palli, M. M. K. (2017). A numerical approach for solving
singularly perturbed convection delay problems via exponentially fitted spline method.
Calcolo, 54:943–961.
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