Thesis Open Access

ETHIOPIAN CAR LICENSE PLATE RECOGNITION USING DEEP LEARNING

ERDEY SYOUM


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="001">4493</controlfield>
  <datafield tag="502" ind1=" " ind2=" ">
    <subfield code="c">ADDIS ABABA SCIENCE AND TECHNOLOGY UNIVERSITY</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">thesis</subfield>
  </datafield>
  <controlfield tag="005">20200131092022.0</controlfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">ERDEY SYOUM</subfield>
    <subfield code="u">ADDIS ABABA SCIENCE AND TECHNOLOGY UNIVERSITY</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1892534</subfield>
    <subfield code="u">https://nadre.ethernet.edu.et/record/4493/files/ETHIOPIAN CAR LICENSE PLATERECOGNITION USING DEEP LEARNING.pdf</subfield>
    <subfield code="z">md5:1f8b34cd7c017dab99cd1125972c8440</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">ETHIOPIAN CAR LICENSE PLATE RECOGNITION USING DEEP LEARNING</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-16</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre/4492</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.20372/nadre/4493</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-aastu</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-nadre</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Automatic Vehicle Identification Convolutional Neural Network Deep Learning Object Detection Optical Character Recognition</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Sreenivasa Rao.vuda (PhD)</subfield>
    <subfield code="u">ADDIS ABABA SCIENCE AND TECHNOLOGY UNIVERSITY</subfield>
    <subfield code="4">ths</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The focus of this research is to develop a system that assist humans in reading car&lt;br&gt;
license plate. Such a study is important as the number of traffic on roads becomes&lt;br&gt;
increasing constantly, the manual process in car license plate recognition becomes a&lt;br&gt;
serious problem for traffic management system which not only detect and track a&lt;br&gt;
vehicle but also identify it. Initially a dataset that contains 930 car images was prepared&lt;br&gt;
for model comparison purpose. Two object detection algorithms (Faster R-CNN and&lt;br&gt;
SSD) were trained and tested on the same dataset using the same model to select the&lt;br&gt;
best candidate. The metrics for the comparison were accuracy, average prediction time,&lt;br&gt;
and total training time taken. It was found that Faster R-CNN gives high accuracy, short&lt;br&gt;
average prediction time, and short total training time. After that additional car and&lt;br&gt;
cropped license plate images were added to the prepared dataset and based on this, two&lt;br&gt;
object detection networks were trained using Faster R-CNN one for plate detection and&lt;br&gt;
another for character recognition on the detected plate. The proposed approach has been&lt;br&gt;
tested on test set and later collected images of national license plate of Ethiopia. Both&lt;br&gt;
the trained models were achieved a high accuracy which is 99 and 98.89 mAP over 0.5&lt;br&gt;
IoU for plate detection and character recognition respectively and takes on average 12s&lt;br&gt;
to complete the recognition of a license plate. The study could be further investigated&lt;br&gt;
on other countries.&lt;/p&gt;</subfield>
  </datafield>
</record>
105
26
views
downloads
All versions This version
Views 105105
Downloads 2626
Data volume 49.2 MB49.2 MB
Unique views 3636
Unique downloads 1515

Share

Cite as