ADAMA SCIENCE & TECHNOLOGY UNIVERSITY

SCHOOL OF GRADUATE STUDIES
DEPARTMENT OF COMPUTING

POSSIBILITY OF AMHARIC QUERY PROCESSING IN DATABASE
USING NATURAL LANGUAGE INTERFACE

A thesis submitted to School of Graduate Studies of Adama Science and
Technology University in partial fulfillment of the requirements for the

degree of Master of Science in Information System

By
Yehitfenta Minuyelet

June 2016

ADAMA SCIENCE & TECHNOLOGY UNIVERSITY

SCHOOL OF CRADUATE STUDIES
DEPARTMENT OF COMPUTING

POSSIBILITY OF AMHARIC QUERY PROCESSING IN DATABASE
USING NATURAL LANGUAGE INTERFACE

A thesis submitted to School of Graduate Studies of Adama Science and
Technology University in partial fulfillment of the requirements for the

degree of Master of Science in Information System

BY: Yehitfenta Minuyelet

Names and Signature of Members of the Examining Board

Role Name Signature

Chair person, Examining board

Advisor SOLOMON TEFERA (PhD)

Internal examiner

External examiner

Acknowledgements

First and foremost | would like to warmly thank my research advisor, Dr. Solomon Tefera, for
his critical and constructive comments of my work and for sharing his best research experience
from the very beginning to the end of this paper. It was a pleasure and great opportunity to
constantly advised and guided by such an intellectual advisor.

| also want to extent heartfelt gratitude to Dr Million Meshesha for providing me the technical
support throughout the paper.

Special thanks go to my best friends, Atakiliti Kassu and Semegnew Asemay, for their technical
support.

| would like to thank my friends, who were with me, for their moral and material support and
many enjoyable moments we had to finish this research.

Last but not least | want to thank Wachemo University and Adama Science and Technology

University for sponsorship.

Declaration

I, Yehitfenta Minuyelet, declare that, this thesis entitled: Possibility of Amharic Language
interface in database: is my original work produced under the guidance of my advisor Dr.
Solomon Tefera and has never been published and/or submitted for any award of Degree in any

other University. Any source used is duly acknowledged in this study.

June, 2016

Abbreviations

NLI
Al
NLP
NLIDB
DBMS
SQL
RDBMS
PLSQL
1Q
HMM
ALIDB
IE

IES
IICNLP
IR
ECSA
IDBS
GUI
DBA
CFG

Natural language interface
Acrtificial Intelligence.

Natural language processing

Natural language interface in database

Database management system.

Structural query language

Relational database management system.
Programming language with structural query language
Intermediate Query

Hidden Markov Models.
Ambharic language interface in database

Information Extraction.

Information Extraction System.

International Joint Conference on Natural Language Processing.
Information Retrieval.

Ethiopian Central Statistics Authority

Intelligent database systems

Graphical User Interface

Database administrator

Context-Free Grammar

Contents

AADSTTACT ...ttt bttt a et h e bbbt et eneens iX
(000 F: o1 ol 0 1= OO OO PR 1
INEFOTUCTION ...ttt sttt ettt b bbb b e e s e st e st e bt e bt s b e se e b e e e s e e eneeseebeebeneens 1
1.1 BACKGIOUN ...ttt ettt b bbbttt b e bt b e e b s e et e s et et ese e st eneebesaeene e 1
1.2 Statement Of the PrODIEMc..cu it 4
1.3 RESEAICN QUESTIONSc.eeeeieieeeeeieetee et et ettt et et e e st e e sae e e e steeseenseeseenteseeneensesseensessesssensesseensessennees 5
1.4 ODJECHIVE OF ThE STUAYevenieieieeeee ettt sttt ettt et b e e ne e 5
1.4.1 GENETal ODJECLIVE ..ottt sttt ettt s bbb bbb e e e n e e e st ebesbeebentens 5
1.4.2 SPECITIC ODJECLIVESc..eviueeieiieiieiieieet sttt sttt ettt b e bbbt et et e e eseebesbeebentens 5
1.5 METNOTOIOQY ...ttt sttt et b bt b e ettt et n bt bene b e 6
1.5.1 Method Of Data Coll@CtION........uiiuiiiiiiieiie ettt ettt e s s bt e e sab e e sbaeesaree s 6
I S (T T Y ol T 1T = o SRR 6
1.6 Scope and liMitation OF the STUAYcceviriririeieici e 7
1.7 SignificanCe OF the STUAYcceeiiiiieieceee ettt st ettt e s re et esteess e seeseensesneennas 7
1.8 Organization OF the STUAYcooiiieierieese ettt sttt e s aesteess e besreensesneenees 7
CHAPTER 2 ettt ettt sttt e s e sttt e s b et e sabe e sabe e st e e e s abee s bbeesabeesabaeesabeesabeeenaseesasaeennrs 9
LITERATURE REVIEW ...ttt sttt s s e sane e 9
2.1 INEFOTUCTION ...ttt bbbttt b ettt b et sa et b et nn e 9
2.2 NLIDB SYSBIMSetiieiiieictieeeee ettt stee e tte e st e s e et te e e bt eesateesateeebaeeasseeeseeessteeenseeessseesnseeenseeesnsesensees 9
2.3 Advantages and disadvantages 0f NLIDBccooioiiieiee e 10
2.4 ComponeNntS OF NLIDBooiiiieee ettt sttt et e et e teste et e sbesaeeneesneeneas 10
2.4. 1 LiNQUISTIC COMPONEINT .. .cuiiitieietieteeiesie et ettt etestesteesteste et e stesaeeeeseeeneestesseensesseeneensesneensesneeneas 11
2.4.2 Database COMPONENT:curiiuirieirieirtet ettt sttt 11

2.5 Various Approaches Used for Development of NLIDBSccccooirieiinieierecceeeeee e 11
2.5.1 Symbolic Approach (Rule Based APProach).........ccoceceeeeeeneeieneneerese et 11

iv

2.5.2 Empirical Approach (Corpus Based APProach)ccceeeeveereeiereieeseseseesieseeeeseeseessesveennas 12

2.5.3 Connectionist Approach (Using Neural Network).........ccccveovevieireneneneneneieieeeeseseese e 13

2.6 Architecture Of NLIDB SYSTEIMS ..eeiciiuiiieieiiieeeeciiieeeectiteeeeitteeeeestteeeeesttaeesesasaeeessasseeesnssseeesnssaneesnssneenan 13
2.6.1 Pattern MatChing SYSTEM ...ccc ittt e e e e bte e e s e bt e e e e eabaeeeesntaeeesanes 13
2.6.2 SYNTAX DASEA SYSTEIM .oiiiiiiiii ittt et e e e e tte e e s e ette e e e ebteeesebteeeeenstaeeesaseaeeesnnes 14
2.6.3 SeMANTIC BrammMar SYSTEM .. ccii ittt e e e s e et e e e e e s s saebe et e e e e e e eaasnneaeeeeas 16
2.6.4 Intermediate Representation LANGUAEZES.c.uveiiciiiieieiieee ettt et e e e tte e e e eate e e e snaaeeeeanes 17

2.7 EXISTING NLIDB SYSTEIMS ..eeiiiiiiiiiiiiiiititee e ettt e e e e ettt e e e e s s s bbbt e e e e e s s s sanbteeeeeesssaansseaeaeeesssannnnes 18
2.7.1 Recently developed NLIDBS in English 1angUAgEccoccuveeiiiciiiiiiiiiee e 18
2.7.2 Natural language interfaces other than English [anguage........cccoecveveivciiiiicciiee e, 19
CHAPTER 3 ettt b e s bt s a e st et et e bt e bt e sbe e sae e eateeab e e beesbeesaeesabesabeebeenbeennes 22
Methodology OF the STUAYcveeeeeeceeeee ettt st e st e s b et e steesaebesanenes 22
B.L INEFOUUCTION ...ttt b et bbbt s bbbt ettt b et b e 22
3.2 DAta COBCTION ...ttt ettt sttt ettt et 22
3.3 Related tools and teCANOIOGIES.ecviieeeecece ettt ettt e ra et saeenre s beennas 23
B3 L JAVA e e e R e s r e n e r e re e 23
3.3.2 NETBEANS ...iii ittt e 26
3.3.3 DATABASE ...ttt ettt et e e e e e e eree e e e e e e e e hree e e e e e e e e e annberteeeee e e nnreneeeeas 27

3 SUMIMIAIY . eieeeeeeee e eeeeee e e ee s e s e e e eeeeeeeesaaaeaaaaaaaaaeasasaaaaasaasasaseeesesaeesesasaseeeeeseeeeeeesenasenanes 29
CRAPTET-Z ...ttt b e e b e s bt e s a e e s at e e bt e bt e bt e bt e ebe e sat e e ab e e be e bt e eheesheesabeebeebeenbeeaes 30
Analysis & Design of Amharic Language Interface in Database........cccceeeeciiieecciiii e 30
0 T oY o o [¥ ot i o T o HO PO USR TR 30
4.2 Architecture of Amharic language interface to database (ALIDB)..........cceeecieeeeeiiiieeeeciieee e 30
4.2.1 Graphical USEr INTEITACEooe ittt e et e e e et r e e e e abae e e e e ateeeeeenreeas 30
V200 20 2 W 1 T= W 1 £ o ol o] g Y oYY 1= o | A3t 31
4.2.2.1. TOKEN ANGIYZEN ...utiiieee ettt e e e e et e e e e e e e et ateeeeeaeeesanstsaeeeeaesesasstsaneaeaesesannrenes 32

L B N ot | I T g ¥ 1 V7] SRR 33

4.2.2.3. SEMANTIC MEANINE . ciiiii ettt et e ettt e e e e e ettt et e e e e s s aabaraeeeeeeessaasssaeeeeeesssasssreaeeeessesanassnes 34
4.2.3 Database COMPONENTESuuiiiiicieeeeciee ettt e e e rtte e e e ete e e e eebe e e e e sbaeeeesnbaeeeeantaeeeenntaeeeeanseeeeennsenas 35
4.2.3.1. SOL GENEIAtiON ceuvviiiiiiiiiiiii e 35
4.2.3.2. SOL @XECULON ..eiiiiiiiiiiiitiie ettt rb e st s ra e 36
G TR T B 1 211V SRRt 36

4.3 AIGOTTERM FOr ALIDBoeeeiieiieee ettt ettt e et e e et e e e e eat e e e e sataee e e asaee e s nsaaeesssseeeenssneesnnseneenns 37
00 0T 01 1<) TP 40
Prototype implementation and SUmmary of FINAINGSc.coovvieieiiiieececereeeee e 40
5.1, ALIDB SYSTEIMeiiiiieciiee ettt esiee ettt e st e e tee e sateesteeeaeeessbeeessaeessteesseeeasseesssaeeseasanseeensseesnsaeenseeesnsessnes 40
5. L USEE INEEITACE ettt sttt et e b e be e sae e st e et e e beesbeesaeenas 40
5.1.2 Amharic language query supported in ALIDBcueeiiiciieieiiiiieeccieeeeeciieeeseiree e e e e sveeee e 41

5.2 Evaluation of proposed SYStEM......ciiciiii ittt ee e s ee e e st e e e s abe e e s snbe e e e e nareeas 44
5.3 ANAIYSIS OF FESUILS et e e e e e st e e e s bt e e e e s abeeesssreeesenseeas 45
5.3.1 Databases used for @Valuation:cceeiieiiiniiiie e 45
5.3.2 Analysis according to QUESION CAtEEOIY ...ccccuvieeeeciiieeeeiieeeeeiieeeeectee e e ectre e e e e cteeeeeerteeeeseneeeeeannes 46
5.3.3 Cat@ZOIY WiSE ACCUIACY ...uvvriieiiiiiiiiiiiiieeeeseensiiitteeeeesssssunrtreeeesssssssssreseesesssssssssseseeeesssssssssnsaseees 56
5.3.4 Analysis according tO USEI CAtEEONY.....ciiiiuiieeeciieeeeiiieeeeiieeeeeeteeeeesbeeeeessaeeesssseeesasseeesasseeenan 56
5.3.5 0VErall MEASUFEMENT «..eoiiiiiiiii ettt sttt et b e s bt e sae e st e e beesbeesaeesanenas 57

5.4 SUMMARY ...ttt ettt ettt st ettt e bt e s bt e s et st e s bt e bt b e e s b et s ae e et e e r e e reesneenane e 58

00 0T o1 1<) T TSP 59
ConClusions AN FULUIE WOTKSc.couiiiiiiiiici ettt 59
6.1 CONCIUSION ..ttt sttt ettt e bt e she e sae e st e s bt e bt e b e e sbeesmeesateenteenbeesneesanenas 59
6.2 FULUIE WOTKS ..cniiiiieiiie ettt ettt st et e b e st st st st e b e b e sbeesmeesateenneebeesneesnnenas 60
RETEIEICE ...ttt b bbbt b et b et 61
N 0] 12T o o0 66

Vi

List of Table

Table: 2.1 Pattern MatChing SYStEM .o e e e e 14
Table 4.1 Operator Word handIercoioeiiiii i e e e s 33
Table4.2. Where condition handler..........ocueiiiiiiiiiiii e 33
Table5.1 Employee table StrUCtUI.......ciiiiiiie e 45
Table5.2 Department table StrUCTUIEvviiieeeec e e 45
Table 5.3 Employee on education table StruCtUIeccceeeiee e, 46
Table 5.4: Description of Category wise QUESLIONuveeeiiiiieiiiiiieeeee e 46
Table5.5 Category List (L) QUETIESueiieeiieeeceiiiee ettt ee ettt e et e e e siaee e e s saae e e e s naee e e saaeeeeenanees 47
Table 5.6 Accuracy of system for Category L QUEIYuuvviieeiie et e e 48
Table 5.7 Category single condition(S) QUETIEScceecviieeieiiiiee et e 49
Table 5.8 Accuracy of system for Category S QUEIYcevivciieiiiiiiiee e e 50
Table 5.9 Category Of J QUETIES ..uuuiiiie et e e e e e e e s et r e e e e e s e s nnrraaeeaeaeas 51
Table 5.10 Accuracy of system for Category J QUEIYccoveiiiiieiiiee e 55

Vii

List of Figure

Figure 1.1: Generic NLP SYSTEM [43] ...ttt e et e et e e e e e e e st e e s e eaae e e s ennaeeeeenaeeeas 2
FIZUIE 1.2 NLP IEVEIS [A4] ... ettt ettt e e e e et e e e e e e e e e e etbtaeeeeeeeesesantraaeeeaaeeennans 2
Figure 2.1: Parse tree in a syntax-based SYSteM..........uviiiiieiii i 15
FIBUIe 2.2: SEMANTIC TIOE .t bsbsbsssbasssssssnsnsnne 16
Figure 2.3 Intermediate Representation Language possible Architecture........cccccceviviecvivennen.n. 17
Figure3.1. JSE platform [B0] ...cccuueeeeiiieee ettt e e 24
Figure 3.2.How java works (source: WwWw.go0gle.images.Com)ccvevvereereerueseesieesieseeseennens 25
Figure 3.3 SQL Developer USer iNterfacecoucuveeieiiiiii et 29
Figure 4.1 Architecture of Amharic language interface in database..........ccccooeeeeiiieeeecciieecenee, 31
Figure 5.1 GUI of Amharic [anguage qUEry ProCeSSING.......cccuuieeeiiireeeeiiieeeeeiteeeeeerree e e esreee e e 41
Figure 5.2 LiSt QUEIY SCrEENSNOT . .cccceiiii ettt e e e e e e s aae e e e e eaeees 42
Figure 5.3.Single condition quUery SCreenShotc..eeiiiiiiiie e 43
Figure 5.4.J0INING QUEIY SCrEENSNOTciiiiiiiiieccieee e e s e e e s bae e e e e 44
Figure 5.5: System Performance for category L QUETIYcoccuvieeeeiiiiee e 48
Figure 5.6 System Performance for category S QUETYuiiuiiieiiiiiiiee e 51
Figure 5.7 System performances for category J QUEIYueevie i cccciiiiieeee et e e 55
Figure 5.8 System performances for category WiSe aCCUracycccvveeeeeeeeieiiirrreeeeeeeeeeseinnreneeeeens 56
Figure 5.9 System performances for USer Cat@BOrYuuueeiiiiieccciiiiieeee et e e evrree e e 57
Figure 5.10 Allover system PerformManCesouii it e e e e atrer e e 58

viii

Abstract

In the world, information plays an important role in our lives. One of the major sources of
information is database. Database and database technology are having major impact on the
growing use of computers. Almost all IT applications are storing and retrieving the information
or data to and from the database. Database Management Systems (DBMS) have been widely
used for storing and retrieving data. However, databases are often hard to use since their
interface is quite rigid with users. For storing and retrieving the information from database it
requires the knowledge of database language like SQL. Structured Query Language (SQL) is an
ANSI standard for accessing and manipulating the information stored in databases. Only few
people who have knowledge of database structure and formal database language (such as

Structured Query Language (SQL) can retrieve the desired information from databases.

The objective of this research is to explore the development of an efficient and user friendly
Ambharic Language Query Interface to Database (ALIDB) system that allows non-technical users

to interact with database using Amharic language.

The prototype system can handle the following types of queries: List Queries, Condition Queries
and Join queries is developed. It is tested with 60 Amharic query sentences which are collected
from 12 users. The accuracy of the system is measured in term of precision percentage with two
classes that identifies query response as: Correct and Incorrect. The results found are
encouraging and the overall efficiency of system is observed to be 63.3%.

Keywords: database, Database management system, NLP, NLI, NLIDB, Amharic language
interface in database.

Chapter One

Introduction

1.1 Background

Natural Language Processing (NLP) is a field of research and application that determines the
way computers can be used to understand and manage natural language text or speech to do
useful things. The term “natural” in the context of the language is used to distinguish human
languages (such as Amharic, Tigrigna, AfanOromo, English and so on) from computer languages
(such as C, C++, Java and Prolog). Natural language processing is becoming one of the most

active areas in Human-computer Interaction.

The goal of NLP is to enable communication between people and computers without resorting to
memorization of complex commands and procedures. In other words, NLP is a technique which
can make the computer understand the languages naturally used by humans NLP researchers aim
to gather knowledge on how human beings understand and use language so that appropriate tools
and techniques can be developed to make computer systems understand and manipulate natural
languages to perform the desired tasks. The foundations of NLP lie in a number of disciplines,
computer and information sciences, linguistics mathematics, electrical and electronic
engineering, artificial intelligence and robotics, psychology. Figure 1.1 represents a generic NLP

system.

Typed
Input

Message
Text

Speech

Speech

s o

s OoOwmLmO O N

Natural
Language
Processor

Recog.

——) Meaning =P

H o S

Qoo =«

Answer

Output I

Database
Update

Spoken
Response

Other

Figure 1.1: Generic NLP system [43]

The NLP can broadly be divided into various levels as shown in figure 1.2

morphological]
speech and lexical parsing contextu al
analysis . reasoning
analysis J
speech morphological syntactic utterance
synthesis realization realization planning

pronunc-

iation
model

Phonology

morpho-
logical
rules

lexicon and
grammar

Morphology Syntax

discourse
context

Semantics

application
reasoning and
execution

domain
knowledge

Reasoning

Figure 1.2 NLP levels [44]

Natural Language Interface to Database (NLIDB): It is one of the applications of natural
language process and it is a process of finding answers from database by asking questions in

natural language.

Natural language understanding is the major challenge for any NLP that is enabling the

computers to extracts meanings from natural language query.

Processing natural language to extract query information will be done using keywords and
statistical keyword disambiguation using a vector similarity measure. We defined keywords to be

words or phrases that hold particular meaning within the domain [2].

One of the most wide and interesting area of Natural Language Processing (NLP) is the
development of a natural language interface to database systems (NLIDB). In the last few
decades many NLIDB systems have been developed. Through these systems, users can interact
with database in a more convenient and flexible way [5].

We require information in our daily life. One of the major sources of information is database. A
database is made up of three types of elements: relations, attributes and values. Each element is
distinct and unique, an attribute element is a particular column in a particular relation and each
value element is the value of a particular attribute. A value is compatible with its attribute and
also with the relation containing this attributes [12].

Query processing in databases that provide low-level access routines such as flat file databases,
the programmer must write code to perform the queries. With higher level database query
languages such as SQL, a special component of the DBMS called the Query Processor takes care
of arranging the underlying access routines to satisfy a given query. Thus queries can be

specified in terms of the required results rather than in terms of how to achieve those results.

Database Management System is a collection of interrelated data and set of programs to access
those data. Databases management systems quires are written in the form of complex language
like SQL, SPARQL etc. which is difficult for the causal and non-technical users that limits the
access to the databases whereas a Natural Language Interfaces to Databases (NLIDBS) provide

mechanism for those users to access the database with their native language.

In Ethiopia most working areas that using Amharic language in day to day activities and that
records their data to database in Amharic language but there is no knowledge of Query languages
like SQL to retrieve their data from database and update and delete their data to database .The
goal of this study is to develop Amharic language interface in database in order to show the
possibility of Amharic query processing in database using natural language interface. It provides
communication between user and computer without knowledge of SQL query or using their

native language.

1.2 Statement of the Problem

Ambharic language query processing on database is not used in most working areas but some
experiments or researches have been conducted in other languages like Indian and English
language. NLIDB starting from the year 1970 and still the work is going on, but now a day in
Ethiopia is not conducted in Amharic language.

Ambharic is an official working language of the Federal Democratic Republic of Ethiopia.
According to a census report by ECSA (Ethiopian Central Statistics Authority) (1998), it is the
first language for more than 17 million and second language for over 5 million people. But in
2007 there are 25 million native speakers, outside Ethiopia; Amharic is the language of some 2.7

million emigrants.

In working areas, Ethiopia that use Amharic language, for this large number of working areas
that use the recorded data for their activities so, to easily access data from the recorded data or
from the database, the user that should use query language. But Query languages like SQL are
very difficult to use for general users and they find it hard to learn. So to make database
applications easy to use for these users or general users, to make Amharic language interface to
database has been developed for easily use. The query will be asked in the Amharic language for
retrieving relevant information from database and there is a facility of updating and deleting the
data from table or database by users. Users give the input in Amharic query sentences i.e.
unstructured query sentences, the system that display structured query sentences and the result or
the retrieved data from database in same language to the users on the graphical user interface.

Some researchers conducted in related to natural language interface in database done in Hindi

language by BTKIT, Dwarahat, Almora, and Uttarakhand, and in English language Ambala and

Haryana India.

Asking questions to databases in natural language is a very convenient and easy method of data
access, especially for casual users who do not understand complicated database query languages
such as SQL.

The method used in this research in Amharic query processing in database can contribute to the
conversion or translation of unstructured query sentences in to structure query sentences and

simplification of retrieving data from database for Amharic language.

1.3 Research Questions

In this study, the following questions have been answered with the result obtained from the

experiment:

1. What are the challenges of developing for Amharic language interface in database?
2. How to convert unstructured query sentences into structure one?

3. How to map user requirement with proper structured query language?

1.4 Objective of the Study

To contribute towards addressing the problems described above, the study has the following

general and specific objectives:

1.4.1 General Objective

The general objective of the study is to show the possibility of Amharic query processing for

database using the natural language interface.
1.4.2 Specific Objectives

With the intention of providing a tool to the system for Amharic query processing in database

using natural language interface have the following specific objectives:

e To review previous researches as related works

5

e To understand the concept of query processing in database using natural language
interface.

e To develop a system that can handle queries for conversion of unstructured Amharic
query sentences in to structure query sentences and retrieving the data from tables stored
in database.

e To examine the effectiveness of the prototype using the queries prepared for the
experimentation

e To discuss and report experimental results found and recommend further research works

in the area.

1.5 Methodology

To realize the main goal of this study, different methods and techniques are used. The main

procedure or methods of the study described on below.

1.5.1 Method of Data Collection

The data was collected from educational institutions by using observation for record data in
database. The repositories of natural language queries are prepared based on various question
categories which is list query, single conditional query and simple joining table query within

single condition and 60 queries collected from 12 different users.

1.5.2 Research Design

To convert the natural language query into a structured query form, it has to go through various
phases or levels. We have analysed and designed the architecture of Amharic language interface
in database for the generation and execution of SQL query by taking the user’s input in natural
language form (Ambharic).The Amharic language interface in database system uses tools such as:
java, NetBean and oracle. The various components used in research, algorithm designed and

prototype implementation are discussed in chapter 4 and 5.

1.6 Scope and limitation of the Study

The study focused on developing the prototype of natural language interface for database in
Ambharic language. For query processing in Amharic language that only include the activities for
conversion of Amharic query sentences into structured query and retrieving data from the
database. However, the research was limited to the development of a prototype Ambharic
language interface in database since it is impossible to develop a full-fledged system within the
given time and resources available for the research. Developing a complete system demands to
construct maps of different levels for easy exploration, which in turn requires a long period of

time.
1.7 Significance of the Study

The major contribution of the study is to developing Amharic language interface in database to
facilitate user access to the data from relational databases without forcing them to have
knowledge of formal database language such as SQL. So that this work will have an immense
effect on future researches of query processing in database systems in improving their

performance by understanding the context of queries. Benefits of the system:

* The user can query using Amharic language without spending time to learn a formal database

language such as SQL.

*And at the end of this work, the result will help future researchers that aim to work on

developing query processing in database in other language like: Tigrigna, AfanOromo etc.

1.8 Organization of the study

The documentation is organized in the form of the following chapters

Chapter-1 Deals with introduction to Natural Language Processing: It describes an overview
of natural language processing in the form of its level such as phonology, morphology, lexical,
syntactic and semantic. This chapter also discusses a brief history of Natural Language
Processing, Besides, Natural Language Processing applications like information retrieval,

information extraction, question answering, summarization, machine translation; dialogue

systems etc. are also discussed. The chapter moreover discusses the aim and objective of the
Natural Language Interface to Database (NLIDB), benefits of NLIDB with different interfaces.

Objective and scope of research work are also discussed in this chapter

Chapter-2 Deals with the study related to Natural Language Interface to Database: It
describes survey related to Natural Language Interface to Database, available systems and

commercially available NLP tools.

Chapter-3 Deals with the methodologies of the study: It describes the tools that are used in
this IDE — NetBeans is used for developing application which discusses various Java API and

library used and for GUI. It also discusses the database tool oracle.

Chapter-4 Deals with analysis & Design of Amharic Language Interface in Database: It
describes the various phases of Amharic language interface to database based on their input
sentence, and mapping into structured query language, executing the same and providing the
query result to user in the form of graphical user interface. The chapter also discusses the

architecture or model and algorithm for various methodology designed in the work.

Chapter-5 Deals with the prototype implementation and Summary of Findings, It describes
the prototype of the proposed system and their results with the database and there Amharic query
sentences collected from different end-users.

Chapter-6 Deals with the conclusions and future works of the study: Based on the results of
the experiment, the last chapter (chapter six) presents the conclusion and Future Works of the

research.

CHAPTER 2

LITERATURE REVIEW
2.1 Introduction

The previous chapter discussed the problem addressed by this study and the method used. This
chapter provided a review of related systems and the lessons learnt from such systems. In
addition, the natural language interface in database (NLIDB) system, advantages and
disadvantage, components, architecture and approaches are described in the subsections of this

chapter.

2.2 NLIDB Systems

One of the most interesting application areas of Natural Language Processing (NLP) is natural
language interface to database systems (NLIDB).A lot of work has been done in the area of
NLIDB. Asking questions in natural language is very convenient and easy method of data
access, especially for casual users who do not understand complex database query language
such as SQL.

The purpose of Natural language Interface to Database System is to accept requests in Amharic
or any other natural language and attempts to ‘understand’ them or we can say
that Natural language interfaces to databases (NLIDB) are systems that translate a natural
language sentence into a database query. NLIDB is a step towards the development of intelligent
database systems (IDBS) to enhance the users in performing flexible querying in databases
[24].A complete NLIDB system will benefit us in many ways. Anyone can gather information
from the database by using such systems. Additionally, it may change our awareness about the
information in a database. Traditionally, people are used to working with a form; their
expectations depend heavily on the capabilities of the form. NLIDB makes the entire approach

more flexible, therefore will maximize the use of a database.

The area of NLIDB research is still very experimental and systems so far have been limited to
small domains, where only certain types of statements can be used. When the systems are scaled

up to cover larger domains, it becomes difficult due to vast amount of information that needs to

be incorporated in order to parse statements [28]. Although the earliest research has started since

the late sixties, but in Ethiopian context there is no researches conducted in NLIDB.

2.3 Advantages and disadvantages of NLIDB

Advantages of NLIDB

The NLIDB systems allow the user to communicate with database in their native language. The

main advantages of Natural language Interface to Database are given below [1]:

The user that want to retrieve the data or that process the query from database that
simply access the data from database their native languages.

Simple and easy to use: The natural language interface is very simple and easy to use
because the end users write the query in their native language

No need of Training: No special training is required before using the natural language

interface. It is highly user friendly and easy to use by the end users.

Disadvantages of NLIDB

Linguistics coverage is not obvious: Currently all NLIDB systems can understand some
subsets of a natural language but it is quite difficult to define these subsets. Even some
NLIDB systems can't handle certain query belong to their own subsets. This is not the
case of formal language like SQL. Because the formal language coverage is obvious and
provide the corresponding answers of any statements that follow the given rules [5].
Confusion for users: when the NLIDB does not understand the question, it is often not
clear to the user whether the rejected question is outside the system’s linguistic coverage
or whether it is outside the system’s conceptual coverage. Some NLIDB attempt to solve
this problem by providing diagnostic messages, show the reason a question cannot be
handled.

2.4 Components of NLIDB

In NLIDB there are two major components can be considered as a classical problem in the field

of natural language processing and can be solved in this two stages [23]. Although, the earliest

research has started since the late sixties, NLIDB remains as an open research problem.

10

2.4.1 Linguistic component:

It handles input as natural language, translate it into formal query and generate output in natural
language from the result which comes after execution of query [23]. It is responsible for
translating natural language input into a formal query and generating a natural language response

based on the results from the database search.

2.4.2 Database component:

Database component performs traditional database management functions. A lexicon composed
of a number of tables that store natural language words and their corresponding mapping to
formal objects that are used to create a formal query. These tables can have entries of relations
name; attribute names, etc. questions entered in natural language translated into a statement with
the help of lexicon. Then a formal query is formed by mapping these tokens into lexicon tables,
which is executed and the result in natural language is given to user. Database management and
access is performed and the SQL query is executed by the system [23]. Natural language
database systems make use of syntactic knowledge and knowledge about the actual database in

order to properly relate natural language input to the structure and contents of that database [24].

In this study includes these two stages which are linguistic components for user input query
tokenization to logical query execution and database components for SQL generation to SQL

execution to users.

2.5 Various Approaches Used for Development of NLIDBs

Several researchers applied different techniques to deal with language. Neelu Nihalani et al [6]
Mainly introduced or described three types of approaches regarding the development of NLIDB,
Those are symbolic, empirical and Connectionist approaches. Regardless of these approaches,
the development of complete and suitable model is still difficult for certain applications like

speech understanding.

2.5.1 Symbolic Approach (Rule Based Approach)

Natural Language Processing appears to be a strongly symbolic activity. Words are symbols that

stand for objects and concepts in real worlds, and they are put together into sentences that obey

11

well specified grammar rules. Hence for several decades Natural Language Processing research
has been dominated by the symbolic approach [24]. Knowledge about language is explicitly
encoded in rules or other forms of representation. Language is analyzed at various levels to
obtain information. On this obtained information certain rules are applied to achieve linguistic
functionality. As Human Language capabilities include rule-base reasoning, it is supported well
by symbolic processing. In symbolic processing rules are formed for every level of linguistic
analysis for example in query processing the meaning of the token word is depend on the lexicon
dictionary this dictionary is prepare depend on the case study database i.e. employee database . It

tries to capture the meaning of the language based on these rules.

2.5.2 Empirical Approach (Corpus Based Approach)

Empirical approaches are based on statistical analysis as well as other data driven analysis, of
raw data which is in the form of text corpora. A corpus is collections of machine readable
text. The approach has been around since NLP began in the early 1950s. Only in the last 10 years
or so empirical NLP has emerged as a major alternative to rationalist rule-based

Natural Language Processing.

Corpora are primarily used as a source of information about language and a number of
techniques have emerged to enable the analysis of corpus data. Syntactic analysis can be
achieved on the basis of statistical probabilities estimated from a training corpus. Lexical
ambiguities can be resolved by considering the likelihood of one or another interpretation on

the basis of context.

Recent research in computational linguistics indicates that empirical or corpus —based methods
are currently the most promising approach to developing robust, efficient natural language
processing (NLP) systems [24]. These methods automate the acquisition of much of the complex
knowledge required for NLP by training on suitably annotated natural language corpora, e.g.

tree-banks of parsed sentences [24].

Given the successes of empirical NLP methods, researchers have recently begun to apply
learning methods to the construction of information extraction systems [24].Several different
symbolic and statistical methods have been employed, but most of them are used to generate one

part of a larger information extraction system. Majumder, experimented N-gram based language

12

modeling and claimed to develop language independent approach to IR and Natural Language

Processing [24].

2.5.3 Connectionist Approach (Using Neural Network)

Since human language capabilities are based on neural network in the brain, Artificial Neural
Networks (also called as connectionist network) provides on essential starting point for modeling
language processing. In the recent years, the field of connectionist processing has seen a
remarkable development. The sub-symbolic neural network approach holds a lot of promise for
modeling the cognitive foundations of language processing. Instead of symbols, the approach is
based on distributed representations that correspond to statistical regularities in language. There
has also been significant research applying neural network methods to language processing [24].
However there has been relatively little recent language research using sub-symbolic learning,
although some recent systems have successfully employed decision trees transformation rules
and other symbolic methods. SHRUTI [24] system is neutrally inspired system for event
modeling and temporal processing at a connectionist level.

2.6 Architecture of NLIDB systems

There are various architectures that are used by different researchers. Researchers have applied
in a number of architectures in different cases these are: pattern matching system, syntax-based
system, semantic grammar system and intermediate representation language. Which is mainly
introduced or described those four architecture by Himani Jain [8], Androutsopoulos, et al [10]
and Neelu Nihalani et al [24] .

2.6.1 Pattern matching system

In pattern matching system patters and rules are given and that patterns and rules are fixed. The
rules are, if input sentence or word is match with given pattern, the action has been taken and
that actions are also mention in the database. But it is for some limited database and to the
number of complexities of its pattern [24]. This technique also helps the systems to come up with
reasonable answers even if the questions are out of the range for which the systems are designed

[4]. The advantage of this system is no parsing and module needed, system can be easily

13

implemented other systems and it is easy to add or remove features within the system .Consider
this table below: [26].

Table: 2.1 pattern matching system

Name Department Salary

ANTIeL Al finmri Ly 4,000

infen THaor PPOTm+C 2L7h | 9,000

nmryt ann Niifeg, 5,000

A simple pattern matching system may develop a rule like:

pattern: ... ’department’ ... [employee]

answer : SELECT department FROM employee WHERE name=[employee] The above rule
specifies that if there is a sentence containing a keyword “department” followed by a employee
name, then the related answer is SELECT department FROM employee WHERE
name=[employee] .The employee name can be obtained by looking for a certain value in the
table. Certainly a pattern matching system is not necessarily to be that simple. Instead of just
seeking an exact match with the keyword, the system could also consider additional conditions.
For example: a single term in a pattern can consist of several features , such as the stemmed form
of the keyword, the part of speech (POS), the synonym, the hypernym, the position in the
sentence, and many others. Some systems are working effectively but some would lead to be

failed. SANVY is the best example of the pattern matching system [10].

2.6.2 Syntax based system

In syntax-based systems the users question is parsed (i.e. analyzed syntactically) and the
resulting parse tree is directly mapped to an expression in some database query language. It uses
a grammar that describes the possible syntactic structures of the users’ questions. One of the

examples of syntax based system is LUNAR [25].

Syntax based NLIDBs usually interface to application-specific database systems that provide
database query languages carefully designed to facilitate the mapping from the parse tree to the
database query. It is usually difficult to devise mapping rules that will transform directly the
parse tree into some expression in a real-life database query language (e.g. .SQL) [24]. The main

14

advantage of using syntax based approaches is that they provide detailed information about the
structure of a sentence. A parse tree contains a lot of information_about the sentence structure;
starting from a single word and its part of speech, how words can be grouped together to form a
phrase, how phrases can be grouped together to_form more complex phrases, until a complete
sentence is built. Having this information, we can map the semantic meanings to certain

production rules (or nodes in a parse tree).

Syntax-based systems use a grammar that describes the possible syntactic structures of the user’s
questions. The following example shows an over-simplistic grammar in a Lunar-like system
[10].

S — NP VP
NP — Det N
Det — “what” | “which”| “the”
N — “rock” | “specimen

VP —- VN

7,‘“

magnesium

”"C

radiation” | “light”

V — “contains emits”

,,lﬁ‘

The grammar above says that a sentence (S) consists of a noun phrase (NP) followed by
a verb phrase (VP), that a noun phrase consists of a determiner (Det) followed by a noun
(N), that a determiner may be “what” or “which”, etc. Using this grammar, a NLIDB could
figure out that the syntactic structure of the question “which rock contains magnesium” is as

shown in the parse tree of figure 2.1

NF’\ A
De/ N Y N
The rock contains Magnesium

Figure 2.1: Parse tree in a syntax-based system

15

2.6.3 Semantic grammar system

A semantic grammar NLIDB system is similar to a syntax-based NLIDB system. The user inputs
will be translated into semantic tree by semantic analysis, then it will be translated into SQL and
a typical example is PLANES [23] and LADDER [23].example of semantic grammar [23] shown
below: example of the semantic grammar

S -> Specimen question | Spacecraft question

Specimen question -> Specimen Emits info | Specimen Contains info
Specimen -> “which rock” | “which specimen”

Emits info -> “emits” Radiation’, Radiation -> “radiation” | “light”

Contains info -> “contains” Substance, Substance -> “magnesium” | “calcium”

Specimen_spec contains_info
Contains substance
Which rock

Magnesium

Figure 2.2: Semantic Tree

The basic idea of a semantic grammar system is to simplify the parse tree as much as possible,
by removing unnecessary nodes or combining some nodes together. Based on this idea, the
semantic grammar system can better reflect the semantic representation without having complex
parse tree structures [26]. Therefore, a production rule in a semantic grammar system does not

necessarily correspond to the general syntactic concepts.

Compared to syntax analysis, semantic analysis uses semantic domain instead of grammar
concept. The grammar’s categories (i.e. the non-leaf nodes that will appear in the parse

tree) do not necessarily correspond to syntactic concepts.

The main drawback of semantic grammar approach is that it requires some prior- knowledge of
the elements in the domain, therefore making it difficult to port to other domains. In addition, a

16

parse tree in a semantic grammar system has specific structures and unique node labels, which
could hardly be useful for other applications. Regardless, there are on-going attempts to
automatically build the grammar rules by obtaining the prior-knowledge based on

user interaction or by automatically extracting it from a corpus.

2.6.4 Intermediate Representation Languages

Due to the difficulties of directly translating a sentence into a general database query languages
using a syntax based approach, the intermediate representation systems were proposed. The idea
is to map a sentence into a logical query language first, and then further translate this logical
query language into a general database query language, such as SQL. In the process there can be
more than one intermediate meaning representation language [24]. Figure 2.3 shows a possible

architecture of an intermediate representation language system.

Parser

Sentence Parse tree
Database query o
< | L r ;
generator ogical query 2 Semantic
language interpreter

Database query
language

Figure 2.3 Intermediate Representation Language possible Architecture

The transformation from a logical query language to a database query language does not need to
be made in one step. As an example, an NLIDB system developed at the University of Essex

uses a multi-stage transformation process [23]. The first logic query is in the form of A-calculus,

17

which is then transformed to a first-order predicate logic, universal domain relational calculus,

domain relational calculus, tuple relational calculus, and finally SQL.

In the intermediate representation language approach, the system can be divided into two parts.
One part starts from a sentence up to the generation of a logical query. The other part starts from
a logical query until the generation of a database query. In the part one, the use of logic query
languages makes it possible to add reasoning capabilities to the system by embedding the
reasoning part inside a logic statement. In addition, because the logic query languages are
independent from the database, it can be ported to different database query languages as well as
to other domains, such as expert systems and operating systems [23].

Most current NLIDBs first transform the natural language question into an intermediate logical
query, expressed in some internal meaning representation language. One typical example of this
type is MASQUE/SQL [23].

2.7 Existing NLIDB systems

There are large numbers of developments in the field of natural language interface in databases
has been done. Asking questions in natural language is very convenient and easy method of data
access, especially for casual users who do not understand complicated database query language
such as SQL.

2.7.1 Recently developed NLIDBS in English language

N nihalani et al, [28]: developed an intelligent interface for relational databases. The system was
developed using JAVA with MySQL and MS-Access as databases and tested using supplier-part
database and North wind database of SQL server 7.0. A group of five students was asked to
formulate the queries in English for the two databases. It has one main characteristic on that
interface it was domain-independence, and it has also composed of two main modules, which

are: a pre-processor and a run time processor.

Neelu Nihalani et al [25] discussed the concept of Natural Language Interface to Database using
Semantic Matching. The system was developed by using the MYSQL server and MS access in

database and system was tested for Northwind Database and compared with MS English Query

18

product. The main functionality is based on semantics and rules. It is composed of two modules:

a pre-processor and run time processor.

2.7.2 Natural language interfaces other than English language

Himani Jain [8] developed Hindi Language Interface to Database. Hindi Shallow Parser which
uses Shakti Standard Format is considered for parsing a sentence. The system was developed in
Java as front end and MySQL in database. For testing of the developed system, employee
database and 50 Hindi input sentences is used. The system is directly maps user keywords to
database entity names and the performances of the system is measured by number of query

sentences.

Amardeep Kaur [27] presented the design and implementation of Punjabi language interface to
agriculture database. The database consists of three tables those are farmer, crop and sale tables
but the author is not considered joining of these table and consider limited words. The system
uses MS Access database and Graphical User Interface with NetBeans platform. The system
accepts input in specific template and test the result based on the three types of query sentences
which include selection of whole table, selection of certain columns of a table and selection of

certain rows of the table.

Ashish Kumar et al, [1] developed Hindi language interface to database system. The system also
developed using their semantic matching. Their system architecture had three phase that is
1.tokinization 2.semantic matching and SQL generator and 3. SQL query execution. For testing

of the developed system, student database is used. Do not improve the linguistic coverage.

Rashid Ahmad et al,[32] is developed An algorithm that efficiently maps a natural language
query, entered in Urdu, the algorithm has been implemented in Visual C#£NET and tested on a
database containing Student Information System and Employee Information System. The
interface that is proposed for this system is based on formal semantics and use AV (attribute
value) mapping algorithm to deal with the tokens. This algorithm maps the particular value of
token into corresponding attribute token. This converts the query from Urdu language to SQL

query. There is about 85 % accuracy in results produces by this system.

19

Rajender Kumar et al, [2] Developed Domain-independent Hindi language interface in relational
database. To make the system was domain independent that use the language processing module
and database module. The authors discuss more about language processing module (query
analyzer, POS tagger, morphological analyzer and semantic analyzer), Graphical User Interface
database module (Domain Identifier, SQL Query Generator and SQL executor). Indian Shallow
Parser which uses for tokenizing and parsing a Hindi sentence. It focuses for the system
separates the domain-oriented knowledge from the linguistic data. The system was developed in
MYSQL for database and JAVA swings as front end. MYSQL is connected to the JAVA using
JDBC (Java database connectivity). For testing of the developed system, Employee Payroll,

Railway Enquiry and Student Information database and 80 queries are used.

Nikita Bhati et al, [29] discussed Analysis of Hindi language Graphical user Interface. Hindi
Shallow Parser which uses Shakti Standard Format is considered for parsing and tokenizing a
sentence. To design the Hindi language interface to databases that includes the description of
architecture of system and structure of EMPLOYEE database used in the system. Their

architecture was focus on five phases those are:

Parse and tokenize their input sentence using Hindi Shallow Parser.

find the English word corresponding to Hindi tokens from a dictionary

Map input Hindi query with database query.

Generate SQL query with the help of database query generator and underlying DBMS.
And

e Execute the query and give the response to user.
The system was developed in MYSQL as database and HTML and CSS for as front end.
MYSQL is connected with ASP.net using mysqldata.dll. That system was handled retrieving
updating and deleting the queries. For testing the developed system employee database and 50

Hindi input sentences used.

Looking at the various NLIDB systems developed by large number of researcher in this field, we
have designed and developed Amharic Language Interface to Database (ALIDB) system that
partially fulfills the knowledge and show the possibility of Amharic query processing in

database. Some of the silent features of ALIDB are: can enter the Amharic query sentence in to

20

the form, direct mapping to table name and column name with user words, semantic of words are
considered, lexicon analysis is done, system that only consider converting the Amharic query
sentences into structure query sentences i.e. converting into SQL and retrieve the data from
datasets or that consider select statements.

21

CHAPTER 3

Methodology of the study

3.1 Introduction

To realize the main goal of this study, different methods and techniques are used. The main

procedure or methods of the study are described below:

e Tokenize the input provided in Amharic query sentences.

e Identify feature of queries

e Extract the table, column, condition information from input Amharic sentences with the
help of mapping of token with the database values and their lexicon or systems
dictionaries used.

e Generating SQL query mapping of input query with the value stored in database tables

e Execute SQL query and give output to user in Amharic language

3.2 Data Collection

The researches gathered data from academic employee in excel form and normalized the
collected data in the form of three tables; those are employee table, department table and
employee on education table. 60 Amharic query sentences were collected by telling about the
database and ,collect from 12 users which is 6 for who have the knowledge of structural query
language and 6 for who are not aware of structural query language and testing from different end

users, those users are:

1. The end users who have the knowledge of structural query language for 30 Amharic
query sentences and,
2. The end users who are not aware about database or structural query languages for 30

Ambharic query sentences.

22

3.3 Related tools and technologies

In this study we use different tools to develop our system those are java for platform NetBean,
database that is oracle and SQL developer as graphical interface of oracle database for the reason
is discussed on below.

3.3.1 Java

Java was originally developed by James Gosling at Sun Microsystems (which has since been
acquired by Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'
Java platform. The language derives much of its syntax from C and C++, but it has fewer low-
level facilities than either of them. As of 2015, Java is one of the most popular programming
languages in use and a safe language to allow within the database. Today, Java not only
permeates the Internet, but also it is the invisible force behind many of the applications and
devices that power our day-to-day lives. Java is everywhere. Java Applets are also used for
improved and secured environment while browsing on the World Wide Web using desktop
computers. The Java platform is not specific to any one operating system but has an execution
engine (called virtual machine) and a compiler with a set of libraries, which can be executed in
various hardware and software systems [30]. Java is a unique technology that runs across all
platforms. The library includes java card, java macro edition, java standard edition and java
enterprise edition.

23

https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_acquisition_by_Oracle
https://en.wikipedia.org/wiki/Java_%28software_platform%29
https://en.wikipedia.org/wiki/Syntax_%28programming_languages%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity

s | Gt

~on [5) A S
" ooty Wt RML 0L Doploy Montorng Toubeshoot Scrptng T
e demWbdat | NpeemPgh

JDK| Integration

2 -----
!m
Libraries
Java
S e
Machine

Figure3.1. JSE platform [30]

The Java platform consists of several programs, each of which provides a portion of its overall
capabilities. For example, a Java compiler converts Java source code into Java bytecode
(intermediate language) for Java Virtual Machine (JVM). The Java Runtime Environment (JRE),
complementing the JVM, with Just-In-Time (JIT) compiler converts intermediate bytecode into
native code. The working strategy of JAVA is shown in the figure 3.2 an executable set of
libraries are also part of the Java Platform. The essential components in this platform are Java
language compiler, the libraries and the runtime environment in which Java intermediate

bytecode executes according to the rules laid out in the virtual machine specification [42].

24

Java Source
Code

Java Runtime

Java Development _
Environment

Kit (JDK)
Java Byte
Code

Java Compiler

Just-In-Time-

Compller(JIT) Java Virtual Machine(JV M)

Hardware Platform

Figure 3.2.how java works (source: www.google.images.com)

3.3.1.1 Java development kit (JDK)

The JDK has as its primary components as a collection of programming tools, some components
of the JDK are:

o applet viewer — this tool can be used to run and debug Java applets without a web
browser

e apt—the annotation-processing tool

o extcheck — a utility which can detect JAR-file conflicts

e Idlj — the IDL-to-Java compiler. This utility generates Java bindings from a given Java
IDL file.

e Jabswitch — the Java Access Bridge. Exposes assistive technologies on Microsoft
Windows systems.

e Java — the loader for Java applications. This tool is an interpreter and can interpret the
class files generated by the javac compiler. Now a single launcher is used for both
development and deployment. The old deployment launcher, jre, no longer comes with
Sun JDK, and instead it has been replaced by this new java loader.

e javac — the Java compiler, which converts source code into Java bytecode

25

http://www.google.images.com/
https://en.wikipedia.org/wiki/AppletViewer
https://en.wikipedia.org/wiki/Metadata_facility_for_Java
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/Java_Interface_Definition_Language
https://en.wikipedia.org/wiki/Java_Interface_Definition_Language
https://en.wikipedia.org/wiki/Java_Access_Bridge
https://en.wikipedia.org/wiki/Loader_%28computing%29
https://en.wikipedia.org/wiki/Javac
https://en.wikipedia.org/wiki/Javac
https://en.wikipedia.org/wiki/Java_compiler
https://en.wikipedia.org/wiki/Java_bytecode

e javadoc — the documentation generator, which automatically generates documentation
from source code comments

« Jar — the archiver, which packages related class libraries into a single JAR file. This tool
also helps manage JAR files.

o Javafxpackager — tool to package and sign JavaFX applications etc.

3.3.1.2 Java APIs

The Java API is the set of classes included with the Java Development Environment (JDE).
These classes are written using the Java language and run on the java virtual machine (JVM).
The Java API includes everything from collection classes to GUI classes. For example, if we
include the statement in the Java program “import javax.swing.*”, then the swing API provide

access to graphical component used to build Graphical User Interface (GUI).

3.3.1.3 Java JAR Files

JAVA JAR (Java Archives) is a package format typically used to aggregate many Java class files
and associated metadata and resources such as text, images, etc. JAR files are archive files built
in ZIP file format and have jar file extension. A JAR file allows the Java runtime to efficiently
deploy a set of classes and their associated resources.in the present work for implementation of

the prototype use the following jar files:

e JDK 1.8.0-05
e Jre8

3.3.2 NetBeans

NetBeans Integrated Development Environment (IDE) is a free, open source and has a
worldwide community of users and developers, it is used to easily and quickly develop desktop,
mobile, and web applications with Java, HTML, PHP, C/C++, and more. The IDE provides
integrated support for the complete development cycle, from project creation through debugging,
profiling and deployment. NetBeans IDE is written in java and runs on Microsoft Windows,
Mac OS X, Linux, Solaris and other platforms supporting a compatible JVM. Features of the
NetBeans ide platform are follows:

26

https://en.wikipedia.org/wiki/Javadoc
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Library_%28computer_science%29
https://en.wikipedia.org/wiki/Jar_%28file_format%29
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Solaris_%28operating_system%29
https://en.wikipedia.org/wiki/Java_Virtual_Machine

e User Interface Management (e.g. menus and toolbars)

e User Setting Management

e Storage Management (saving and loading any kind of data)
e Windows Management

e Wizard Framework (supports step-by-step dialogues)

e NetBeans Visual Library

e Integrated development tools, etc.

3.3.3 DATABASE

3.3.3.1 Oracle

Oracle is open source relational database management system software in Oracle Corporation. It
is a full featured database engine that has successfully passed stringent security tests and has
excelled in performance benchmarks [31]. With built-in support for PL/SQL and Java,
developers can build complex stored procedures, functions, and triggers that are stored and
executed within the database. Views, sub queries, bi-directional replication, clustering, role-
based security, and native support for Internet-based computing with the included Apache server
and XML tools are just a few examples of how Oracle Database is well suited for managing
mission-critical data for any size organization [31].
Key Features of Oracle which are selected from other databases are:
e It works on any platforms
e |t supports or handles very large database
« Itisalso have high performance
« Oracle offers inline views, role based security, advanced replication, etc
o Oracle supports the creation of programs that are embedded within the database by way
of a procedural language and can be executed independently or triggered by certain
events.
o Oracle is better for large scale deployments as it has extensive capabilities.
e Most editions of oracle have high licensing costs, which are needed in order to use the
software. Oracle Express is freely available.
e It Support PI-SQL, in addition to SQL

27

o It provides security features

o It requires username, password, and profile validation at the time of logging

« It Database supports the use of temporary tables for an individual session, or global to all
users.

« It has Tablespace, Role management, snapshots, synonym and packages

We have used SQL developer as GUI which is free and open source community edition in

Oracle Corporation.

3.3.3.2 SQL developer

SQL developer is a Graphical User Interface (GUI) tool for oracle relational database
management system. It was developed by Chuck Murray. It is available both as a freely available

version and also as paid version. Figure 3.3 represents the user interface of SQL developer.

Oracle SQL Developer is a free integrated development environment that simplifies the
development and management of Oracle Database in both traditional and Cloud deployments.
SQL Developer offers complete end-to-end development of PL/SQL applications, a worksheet
for running queries and scripts, a DBA console for managing the database, a reports interface, a
complete data modeling solution, and a migration platform for moving 3™ party databases to
Oracle.

Features of oracle SQL developer are:

e One of SQL Developer’s most popular features has undergone a significant upgrade.
Users can quickly define and recall delimited or excels files to be imported to a new or
existing oracle table. Data preview and validation is provided for each column, as well as
‘best guess’ data type and date format mask mapping. This process can now be
automated via the SQL Developer command line interface (SDCLI) ‘Import’ command
i.e. .import data from other database

e offers multi-cursor editing, remembering frequently used files and directories in open and
save file dialogs, and verbose SQL recording for all statements sent to the database

e |t supports data manipulation i.e. (select, update and delete) using spreadsheet like
interface. It has an editor with syntax highlighting and various automatic formatting

options.

28

e Supports Oracle NoSQL database. Support includes Developer and DBA roles, VLite

Store deployment and seeding, Store Reporting, Store Statistics and Administration. Etc.

- {7 Tables (Fitered)

- AQS_INTERNET _AGENT_PRI\
15 AQS_INTERNET_AGENTS
-5 AQ$_QUEUE TABLES

- A QuEUES

- AQ$_SCHEDLLES

1+ DEFs_AQCALL

- DEFS_AQERROR

&[] DEFS_CALLDEST

1.2 nFFe DFFALINTORST

L —] ¥

-

Reports |

All Reports

(= Data Dictionary Reports
(42 Data Modeler Reports
£ (2> OLAP Reports

[#-(Z TimesTen Reports

(¢l Z User Defined Reports

ORACLE
S0L DEVELOPER
Get Started Community
Losos Lot | Featured Tutorials Featured Online Demonstrations
What's New | Optimizer Access Paths [Database Copy
Release Notes | SOL Tuning Advisor | Reporting Features
Documentation | Working with Tuning Utilities [Orade Data Pump Feature
SQL Developer on OTH |
All Online Tutorials All Online Demonstrations
Show on Startup Copyright © 2005, 2015, Orade and/or its affiliates. All rights reserved.

Figure 3.3 SQL Developer user interface

3.4 Summary

This chapter generally discussed about data collection technique, the concepts of related tools i.e.
Java programming language, its features, Jar files, Java API, Netbean etc. Finally, it discusses

about the concept of database i.e. DBMS, RDBMS, Oracle database and SQL developer.

29

Chapter-4

Analysis & Design of Amharic Language Interface in Database

4.1. Introduction

The computer era has begun since late 1970, bringing awareness into different working groups of
society regarding the usages and benefits of computers. Not only industry, but also educational
institutes, sectors like service, manufacturing, etc. and also started using computers to store,
process and update the information or data. The huge amount of data stored in repository is
called database. In order to query or retrieve the data or information from the database by a
beginner, natural language that will run correct and precise information without knowing the
depth of structured query language was the need of the time. The idea of using natural language
in the context of database prompted the need for the development of Amharic language interface

in database.

4.2 Architecture of Amharic language interface to database (ALIDB)

We have proposed the architecture of the NLIDB system which shows the possibility of Amharic
query processing in database. Figure 4.1 represents the architecture of the ALIDB. The System
has two major components: (a) Linguistic Component, and (b) Database Component. The
Linguistic Component translates the natural language input to an expression of Intermediate
Query (1Q), which is subsequently passed to Database Component for generation of Structured
Query Language (SQL) statement. The resulting SQL statement is then executed by relational
database management system. Various phase of processing the system can be described as

follows.

4.2.1 Graphical User Interface
Our system has a user-friendly graphical user interface which is; user can easily enter their query
in Amharic language and after processing and executing the query, results are displayed to the

user.

30

Token

analyzer

Semantic

MeEaning

Lexicon

analyzer

Linguishic components

=aL

geEnerator

=aL

EWECLTar

Nl to SOL
mapping
rule

atzbase components

Figure 4.1 Architecture of Amharic language interface in database

4.2.2. Linguistic components

The Linguistic Component studies about language. It is responsible for translating natural
language input into a formal query and generating a natural language response based on the
results from the database search. It has mainly three aspects to study which includes language

form (syntax), language meaning and language context [42] which consist of Lexical analyses,

token analyses and semantic meaning analyses.

31

4.2.2.1. Token Analyzer

It splits the input string into a sequence of simple units called tokens that is treated as a single
logical unit. To make a sentence able to be processed by the computer, it is necessary to divide it
into chunks or tokens to understand its meaning and structure [32]. System tokenizes that
sentence and produce tokens that are to be searched in the lexicon for mapping. In Amharic,
most of the words are separated by space as it is in English except some compound words and
the words that are separate in English comma’,” in Amharic called ne-te-la serze (¢).There are

different token representation rules used by our prototype some of the rules are:

1. Core token type:

e If the sentences contain only single words and strings without any compound

words and each word is separated with spaces and ‘ne-te-la serze’ (¥) in
English comma. e.g. enét5%7T A9 RF:LpumH &5 Yadit Amma~
2. Numeric Token:

e If token contains digits only or digits that are separated by forward slash or in

Ambharic ezi bar (/), then it is a numeric token.eg.23000 and 122/05
3. Sentence ending marker:

e Sentence can be terminated with ‘arate nteb’ (::) or question mark (?) or an

exclamation mark (1).
4. Special value token:

e If token contains numeric data with, forward slash or in Amharic ‘ezi bar’ (/)
followed by numeric data then, it is a value token. For example, 112/05 is a
value token.

e If token contain numeric data eg.2400.

5. Noise token:
e A sentence contains words which has no importance in the context which is to be
removed. e.g. &5 (which combine column name), P92, HCHC etc.
6. Abbreviated token:

e If the sentence contains a string with a forward slash or in Amharic ezi bar (/)

followed by word or string, it is considered as a single token. For example

T/h&A etc.

32

4.2.2.2. Lexical analyzer:

Lexicon is system dictionary that store all the Amharic tokens with their corresponding English
word and their SQL words, and type of token whether it is table name, column name, condition,
conditional words, SQL command or something else. The lexicon dictionary prepared in
different table forms that is table_name table that handle all the table names contain in the
database, column_name table that handle all name of columns of all available tables contains in
the database tables, condition table that handle where condition, conditional word table that
handle all conditional words that is > <,=,<=.>= etc., SQL word table that handle the SQL
statement words i.e. Select etc. Sample example of lexicon dictionary in conditional word
handler and where condition

E.g. 1: Conditional word handler

Table 4.1 operator word handler

Ambharic Token word | Mapped word
N+ <
210 <
1k <
[T <
Mg >
ennm >
ennme >
S nHe =

E.g. 2: Where Condition handler

Table4.2. Where condition handler

Token word Mapped word

oatmr Where

33

QN Where

ey Where

eIt Where

eUrrTy Where

4.2.2.3. Semantic meaning:

Semantics is the study of meaning in language. It can be applied to entire texts or to single word.
It is about the manner in which lexical meaning is combined morphologically and syntactically
to form the meaning of a sentence. Mostly, this is regular, productive and rule-governed. Within
these steps that finds the meaning of words or token words from lexicon and match their
corresponding English words.

Lexicon store all the Amharic tokens, their corresponding English word and type of token
whether it is table name, column name, any value, operation, command or something else.
Tokens which we extracted in above step are matched with the tokens stored in lexicon one by
one. If it matches then its corresponding English word is saved along with its type. This is the
most important phase. All the useless tokens discarded in this phase only useful tokens are
stored. After this step we will have with table name, field name (columns name), conditions, and

conditional words. This will be further used to make SQL query.

The output of the semantic meaning interpretation module gives a logical expression of the
words in the lexicon, to generate the logical query. The approach used here is an Intermediate
Query (1Q) representation which can express the meaning of user input in terms of high level

concepts, independent of database structure.

E.g. If the users input in the natural language query as: ea&+5FT n92 HCHC w@ma’ it

tokenize and mapping from lexicon as:

[One.t5T%] employee
[h9°] emp_name

[HC'HC] noise word

34

[AmmAT] select
[::] discard

From the above example, the semantic meaning matches the Ambharic token with their
corresponding English words or mapped words from the lexicon dictionary and identifies their
table name, column name etc. The word “HCHE or ‘zi re zi re’ is the noise word that has no
meaning in the lexicon or system dictionary which described in the above section in token

representation rules.

Intermediate Query (1Q): It is the logical query interpreter which is the midway of the

semantic matching and the SQL generator or transitional of logical query to the SQL query.

4.2.3 Database components

The database component consists of SQL Generation SQL Execution and database management
system (DBMS). The SQL Generation component takes an Intermediate Query (1Q) as an input
from Linguistic component and generates an equivalent SQL query as output. The SQL
Execution component executes the generated SQL query and displays appropriate query output

or message on GUI to user.

4.2.3.1. SQL Generation

The task SQL Query Generator is to map the elements of the logical query to the corresponding
elements of the used databases. The query generator uses four routines in these systems, each of
which manipulates only one specific part of the query. The first routine the part query that
corresponds to the appropriate DML command with the attribute’s names (SELECT). The
second routine part of the query that would mapped to a column name if there is specified if not
use all or * clause, the third routine mapped table’s name or a group of tables names to construct
the FROM clause and the forth routine selects the part of the query that would be mapped to the
WHERE clause (condition).

The steps to generate SQL query are: (i) to analyze the user words from an input sentence (ii) to
recognize the specific patterns of database query language (iii) to determine the analysis of

answer and (iv) by using an 1Q, the system generates structured query. l.e.IQ that handle the

35

column name, table name, where clause, values and operators and generate the SQL query e.g.

CUATI A tE NYICPTL T GG CoumH ADMAT::
né 4 Table name employee

n9? Column name Emp_name

e$TL ¢ column name Hire_date

LmmH Column name Salary

AmmA™ SQL word Select by using is that generate SQL query that is, Select column name from

table name: Select Emp_name, Hire_date, Salary from employee.

4.2.3.2. SQL executor

The task of query executor is to map the generated SQL query to database management system
and retrieve the relevant answer by connecting to the appropriate database tool. We have used an
Oracle relational database for query execution. The SQL query which is executed by relational

database giving the following kinds of responses:

e The retrieved database tuples contain answers and are stored in file rather than
displaying directly in grid format as specified by the SQL database output.

e When the system is not able to search the particular tuples, then the appropriate
response is sent to the user. For example, no record found.

e When the system may not understand the question, then no tuples will be
retrieved and system may send appropriate response to the user. For example,

the query cannot be generated or no domain found.

4.2.3.3. DBMS

The purpose of this system is to get the correct result from the database. It executes the query on

the database and produces the results required by the user.

36

4.3 Algorithm for ALIDB

Input: user inter Amharic query sentence in GUI
Output: execution of SQL query with appropriate out or message on GUI

Stepl. Tokenize input sentences from GUI
DO while to tokenize the sentences

Use the rule the word separated by ne te la serz, arat netib question mark and exclamation mark

and store all token word into Isttokonized, and
If token word is table name
add on Istbl
If else token word is column name
add on Iscol
If else token word is where
add on Iswhere
If else token word is select
add on Isselect
If else token word is wherecolumnname
add on Iswherecolumnname
Else add on noise
Special value token
If the token is numeric it is value token
Add on Isnumber

Else

37

Add on Ischaractor
Step 2.handle table name from step 1
if number of table is one
table =Istbl1
else if number of table is two
table=tbl1 inner join Istbl2 on Istbl2.fk_Istbl2=Istbl1.pk_Istbll
else
table=Istbl3 inner join Istbl2 on Istbl3.fk=Istbl2.pk inner join Istbl1 on Istbl2.fk=Istbl1.pk
End if
Step 3.handle column name from step 2
If column name is one
Column=lscoll
Else if column name is more than one
Column = Iscoll, Iscol2, ... Iscoln
Else
Column ="*”
End if
Step 4 handle SELECT keyword from step 1
Step 5 handle WHERE keyword from step 1
If where keyword is found in stepl

Handle wherecolumn, operator and value from step 1

38

If wherecolumn =(salary or age or id or hire date)
Value =Isnumber
Else
Value =Ischaracter
SQL statement = select column from table where wherecolumn operator value
Else
SQL statement = select column from table
Step 6 If SQL statement successfully executed then
If record exists then
Display SQL statement output on GUI.
Else
Display the appropriate message on GUI
(say, record not found).
End If
End If

Step 7: Exit

39

Chapter 5

Prototype implementation and Summary of Findings

5.1. ALIDB System

We have developed a prototype of Amharic Language Interface to Database (ALIDB) system
using a Graphical User Interface (GUI) to convert unstructured query sentences to structure one
and retrieving the result from database system. Within this system there must be some
requirement specifications those are: system and software specifications. In system requirement

specification:

1. Amharic query sentences or unstructured Amharic sentences and
2. Employee databases.

In software requirement and specification:

1. NetBeans 8.0.2 IDE which supports JDK1.8.0-05 and Jre8 and

2. Oracle database with GUI interface i.e. SQLDeveloper 4.0.

5.1.1 User Interface

Figure 5.1 shows the original display of the system which acts as GUI in which the user will
input a query in Amharic language and the system will display the SQL query and its

corresponding output.

40

[E=)] AMHARIC LANGUAGE INTERFACE IN DATABASE - O X

Userinput ENATEFT NFIRFIETEMLNTT B TEMDHYALIT A% PTPOUCT RAETmY hmmatt:
SOL Query select Emp_name,sex Hire_date Salary,Position, Levell FROM employee E
v

EMP_NAME | SEX | HIRE_DATE | SALARY | POSITION | LEVELL |
RACYT Timan T mie 23/7/2008 5770 FmEmLP BT &
RACYT® DT ADP miE 1/11/2003 7286 nts &7
AACY® THH DT mie 30/3/2001 5770 FmEmLP BT
RAICYT® HTE mIEBELD MR 15/7/2006 5770 FmEmLP BT
GIFNNC AP GNR mie 30/3/2001 5770 FmEmLP BT
RBOF ANND T9NLH miE 18/7/2006 5770 FmEmLP BT
H81 W etm mig 30/3/2001 7286 s AT
87 mE ANND miE 1/1/2003 7286 ts 72
AEANTD /711U BmL it 15/7/2006 7286 etImUCtT hEa Yol ts &7
R filld DIBME miE 30/3/2001 3145 FmEmLE BT
A& ANTIELE AN mE 30/3/2001 7286 ts &7
& MAM £28 miE 14/1/2007 5770 FmEmLP BT
H&Mr 87 HTE mig 28/12/2000 7286 s AT
h&ir BYOmM Bfid miE 20/1/2006 5770 FmEmLP BT
A& MY &7F mie 11272002 7286 ts &7
&ir NET EFONe miE 1/11/2004 5770 FmEmLP BT
& BN AEADT mie 30/3/2005 3145 FmEmLP BT
REFD RALYTD AR miE 1/1/2002 7288 kith 272
HEFUA 3] BmC mie 11/1/2004 7286 s AT
GEYT MBI BHIID @R 16/1/2006 5770 FmEmLP BT
GELDT AOP TIONC mE 1/11/2004 5770 FmEmLP BT
RER MAmM mYL it 38362 4282 FmEmLP BT "'

EOFm o4 HOm mam Qi4mnnA z006 T L ¥

AITmaT

Figure 5.1 GUI of Amharic language query processing

5.1.2 Amharic language query supported in ALIDB

There are three types of queries which are supported in the system. Those are 1.List queries
without condition, 2.conditional queries i.e. with single condition and more than one condition

and 3. Join Queries.

5.1.2.1. List queries without condition

These types of queries require basic information to be selected from the table which specified or
listed in the database. The query may be paraphrase in different form such as: e +§+% nyo
7S fomH AmmA%::: 0N TS M9 wS mCYP hEP AmmMAT::CNSTEET AOITmTY &S
LomHTmY ADmMAT::" CALHEPET NI0 &S ROUH AmmAT::: OndtSmy AYP WS mCYP
ne 9 AmmaT:: etc. and figure 5.2 shows the prototype of select or list queries without

condition.

41

) AMHARIC LANGUAGE INTERFACE [N DATABASE - O X

Userinput ENATHET MFURFOTEMANTT P PTUCT B EmT WS Fmsm eTUCT ARt Rmmat:
SOL Query select Emp_name sex Hire_date Levell Field_study FROM emplayee [‘ L
v

EMP_MNAME | SEX | HIRE_DATE | LEVELL | FIELD_STUDY |
RAICYS Timan T mie 23/7/2006 PMEmLE &7¢ withtena A
RAICYT® nirhi R mie 1/11/2003 s &7 neogea
RAICYT® THE MY mie 30/3/2001 PEmLE &7 geEPndd
RAICYT® HTE DIREELDT [T 15/7/2006 POEmLF &7 LR
AINC ATPC AAR mie 30/3/2001 POEmLF &7 il
ABmr ANNDT Tied mie 18/7/2008 PmEmLP BT wihtend
781 i etmt mie 30/3/2001 s 27 Nt
781 m& HNNm mie 1/1/2003 s &7 i |
REANSE B3I BmC i 15/7/2008 ts &7 EXULETRT
hir fNE mITm mie 30/3/2001 CmEmLE 874 WEFT a2
Agir ANTIRE AN mie 30/3/2001 s 872 ninte
AEIr NAM £28 mie 14/1/2007 EmEmLe £ Ci
hZir BT HTE mie 28/12/2000 s 27 g
h%ir B9Um e mie 20/1/2006 PmEmLP &7¢ il
R&Ir YT 473 mie 1/12/2002 nts &7 RNST R
hi%ir MNET Hyene mie 1/11/2004 PMEmLE &7 WIECTEN thSirs
Air CLRNTY AEAD mie 30/3/2005 CmEmLE 874 It a8
HEFD Al fHifs mie 1/1/2002 s AT il
HEFUA 1] BmC mie 11/1/2004 TS 27 neirs,
AEFD @IBFY BHTIm mie 16/1/2008 PmEmLP BT wihtend il
ARAM HET T9ONC mie 1/11/2004 PmEmLE &7 miLna L
ARE NAmM mYel vt 38362 PmEmLE &7 Anat 0870 F

EDFm 04 HOmm mLm 400 (TS 1. 7] I mi

[l

Figure 5.2 list query screenshot

5.1.2.2. Conditional queries

These types of queries require information to be listed from table which is specified or listed into
the database based on specified condition. The condition can be single or composite conditions
which are categorized as: (i) single query with a single condition as shown in figure 5.3 and (ii)
single query with composite conditions. But only single query with a single condition includes in

these study.
5.1.2.2.1. Single query with single condition

This type of query is requiring information to be selected from the table which is specified in the
database. In this type of query have single condition or where condition with single query. The
query may be paraphrase in different form such as: efinmt31 T92UCT hEA Né+E CPHTY
NI AmmA%::, CANmILIT TINUCT hEA ASTET CRET MU0 AmrmAT::LoumHTor h

42

3500 NAg CIry enet5+T A9° AmmAa~::, mCYP heoTm n 3500 NAL Oy ChdtETD
o AmmAYy::, RFFm m1e Oy ALTSTY N9 WS Coodme P eTLTOT ADMATY: e
nets+T N9° %S Al ¢TidFm amma:: etc. and figure 5.3 shows the prototype of select

queries with single condition.

([E<]] AMHARIC LANGUAGE INTERFACE IN DATABASE — O X
f

Userinput it n&ts PFFtT NP Rmmat:
1
SQL query

select sex,Emp_name FROM employee Where sex =it

[

Result

B| | SEX EMP_MNAME
T ARE MAM amd s
it ANATTLF T hGom R
it MEC LLR VemBuF
it AE A T
it L+aLy Ngh 55
it L+aLs ACur ME
it A em IO T

| AOrmaTh .

Figure 5.3.Single condition query screenshot

5.1.2.3. Join Queries:

These types of queries include joining of two or three tables and retrieving the relevant data from
the database. The different paraphrases of such queries are: @A +t5+% NP RFQ+emeNT
¢% TTOUUCT hEATCMOICNTY QLACAt &S CTIRUCT LA8TmY AmmMA™:: Cnst5PTY
PUO9FQPTL T PTIUUCT NEATCOOICATT QLACAL &S CTIRUCT LlB8Tm ANeT::®
e TETY 90 CHCHC &S TIMICT heATmY AmmAat:, AstST né CEmudNt +7%F
IR TCTm YT w5 CHINICT RZ&TmT AmmA™::, CAstS+T 9% HCHC nyt9ouct
nEATm AmmMAT::, CTINICT hEA YA4LPT CIPPTY A% &S TIPUCT heA AOmmMAY::, 680

43

ann eyicat eUgo9e epyoTm+C ALIh T0APTY PR AYP GmmAT:: etc. and figure

5.4 shows the prototype of select queries by joining different tables.

5| AMHARIC LANGUAGE INTERFACE IN DATABASE — O 4
Userinput BAATEFT APURFIRFEmMANYT ®T HUCY hEATDT 'OMMCATT QUi hG PTUCY BLEFmT hmrmat:
S0L Query MP_EDUCATION INNER JOIN Employee ON EMP_EDUCATION.EMP_ID = Employee. EMP_ID INNER JOIN Department ON Employee. DEP_IE, F
4t i J LIS
EMP_MNANME | SEX | HIRE_DATE | DEP_MNAME | UNIVERSBITY | LEVELL |
ANtI AT NOATY mie 1/3/2002 02nirs &N NN ts A7 |i
ANEYY man oL R mi¥ 14/1/2003 Wit agTh fi&n AON ith BT
20+ TMa mwHET @8 11172004 e nLaEgym PmEmLP BT
A0 thslT moFY mie 2B/11/2000 MOTETL ATEILYT ik ith BT
filld mC® GnTYMm miE 11172003 WitAITT WiEmt &N /0N PmEmLP BT
il Wi find mie 112003 iCh Efle MCEN PmEmLP &7
R ANTM@m 1% miE 1512001 Ll f&N G0N tE B7¢
RAICYT® AANFm BY mie 1/1/2003 LTI MEmit &N 0N PmEmLP &7
BP0 fidledy fiflg miE 1/1/2002 e fign fiNn th B7¢
[R5 Bk NPT mie 8/1/2004 ATTIHS LYl ts A7
fidJIr 11U finme mi¥ 1/3/1999 e fi&n /ON kth &7
fid] mr B0 mie 10/7/2002 T e knts 274
finFn F&7 ay¢ mikE 1/3/1999 wllhn L] hth &7
fnFam WNE 8L mie 112003 mLni fi&n &N PmEmip 274
ANNTIZOTE REOF Bh nt 172002 B nire L] hth &7
ANOYTm YA GBAT @R 1812003 Neirs fi&n G0N tE &7¢
ANSE PImEAT KON mie 13/6/2001 Aot {513 nts &7
ANSPM AOT MAN mix 7/10/1999 Wit a8 bR kth B7¢
fing ENi mir mie 3/2/2001 [il Y ts A7
fizhat YBn ki@ mi¥ 2012000 E] Uik ith BT i
N#i Bie inFoim miE 11172004 iCh gm knts 274 b
nen 170 ngs mie 2B2/2000 WTTUHE fi&n AON ith BT |‘r
NASFm WIILT 0 mm m TR0 LA UM Y| rnn (1] - B ¥
Rmrmi'y

Figure 5.4.Joining query screenshot

5.2 Evaluation of proposed system

We have tested the system taking two different groups of users which is: (i) users who are not
aware of database concepts, and (ii) users who are aware of database concepts. The following

analyses are observed:

A. Allow relaxation of grammar rules: The list of queries includes different paraphrases of
same query or sentence. The system does not follow any particular template for input

query. The result supports the claim of the processing of ALIDB as flexible.

44

B. Easy to understand and maintain: The prototype system supports the user query even
when the user enters any letters like (A:@:0:”) etc., for the query which is not
understood by the system, gives appropriate error message for the user. The result

supports the claim of processing ALIDB as user friendly.

5.3 Analysis of results

5.3.1 Databases used for evaluation:

We have used Academic employee database to verify or validate the developed prototype or
ALIDB system. This database contains three tables namely, Employee, Department and
Employee on education. The structures of the database or tables are shown in table 5.1, table 5.2
and table 5.3.

Table5.1 Employee table structure

COLUMN_NAME | DATA TYPE COMMENTS

EMP_ID VARCHAR2(200 BYTE) | Employee identification
number

EMP_NAME VARCHAR2(200 BYTE) name of Employees

SEX VARCHAR2(60 BYTE) Sex of employees

LEVELL VARCHAR2(34 BYTE) Label of employees

HIRE_DATE VARCHAR2(200 BYTE) Hire date of employees

DEP_ID VARCHAR2(200 BYTE) Department identification
number

FIELD_STUDY VARCHAR2(200 BYTE) Field of study of employees

POSITION VARCHAR2(200 BYTE) Position of employees

SALARY NUMBER Salary of employees

Table5.2 Department table structure

COLUMN_NAME

DATA _TYPE

COMMENTS

DEP_ID

VARCHAR2(200 BYTE)

Department identification

45

number

DEP_NAME

VARCHAR2(200 BYTE)

Name of department

COLLAGE

VARCHAR2(200 BYTE)

Collage of employees

Table 5.3 Employee on education table structure

COLUMN_NAME

DATA _TYPE

COMMENTS

EMP_ID

VARCHAR2(200 BYTE)

Employee identification number

UNIVERSITY

VARCHAR2(200 BYTE)

the university where employee studying on

FIELD_STUDYING

VARCHAR2(200 BYTE)

The employees field of studying

STARTING_YEAR

VARCHAR2(200 BYTE)

The year employees started studying

5.3.2 Analysis according to Question Category

The analysis which is done related to question categories such as: list queries, condition queries

which include single condition queries and Join queries. The category wise query description is

shown in table 5.4. Moreover, the accuracy measurement of system performance in terms of

Correct (C) and Incorrect (1) is carried out through ALIDB system because there is no common

accuracy measurement of NLIDB system.

Table 5.4: Description of Category wise Question

Category of Query | Description

L List Queries

S Single condition Queries
J Join Queries

I. (L) List queries that include the single table query without condition (all rows will be

retrieved or only listed row in user queries will be retrieved) and columns can be in a

form of C4, C,... C, or count (*) or C; and C,... C, or different C; etc., as shown in table

5.5, table 5.6. Figure 5.5 shows accuracy of system for list queries.

46

Table5.5 Category List (L) Queries

No. | User input query System generated query 7]
1 0N TEF T HCHL AmmAaT:: Select * from employee C
2 CwetET Y vt gulE AACT:: select * FROM employee C
3 CUY9? Wi tET oo ool Amm:: select * FROM employee C
4 enétET T a8 hmm:: select * FROM employee C
S N TEmTY HCHEC AW e:: select * FROM employee C
6 e tETY AIUIRFIOTPmMNTY 7 WG @TYUUCT | Select Emp_name,sex,Hire_date,levell | C
LLETMY ADMAT:: from employee
7 CnetETY PUNI9S P TL ¢ WS TUNUCT @¢8 | select sex,Hire_date,Levell FROM I
filrm:: employee
8 CwetEPTY NUUI9Fias CEmueNTy 7 WS @TURUCT | select Emp_name,sex,Hire_date,Levell | C
LC8 AYE:: FROM employee
9 wetET CtemenNty e 90 R4y wWG TYMUCT | select Hire_date,Emp_name,sex,Levell | C
ee8Tmy ATMAT:: FROM employee
10 | QNS TEPTT TINUCT RLE80PTC +%RF WG nyv | select Levell Hire_date,sex,Emp_name | C
iYyey:: FROM employee
11| euny90 Adts NP0 TL 7% hS CmmmH Ammai:: | select Emp_name,Hire_date,Salary C
FROM employee
12 | wetET Mé 08mudNtTy ¢ NI 7S COUH RY0:: select Hire_date,Emp_name,Salary C
FROM employee
13 | ewetEPTY PY DLYE NEP w5 OPTL +7 fimmat: | select Hire_date FROM employee I
14 CwetEPTY ComHTm Y AMTmY &5 né @8oueNty | select Hire_date FROM employee |
7 AN0T::
15 | o190 nets mCYP hEL 0P TL +7 WS MY0 hmm:: | select Hire_date FROM employee I
16 | en&tETT 9P YALYT &S RmUmMH AOmMAT:: select Emp_name,Position,Salary C
FROM employee
17 | @NéTEPTT N9 00 CCH %S CUOH Amrm:: select Emp_name,Position,Salary C
FROM employee
18 | Qe ts a9 hAdiT &S mMCYP he9 AYWE:: select Emp_name,Salary FROM I
employee
19 | ewetEPTT NOTmIIALYFTOY w5 mCYP h&eTm | select Emp_name,Position,Salary C
iYey:: FROM employee
20 | enetETT Ond BLATNYD &S MCYP hEP AN0TY:: select Position, Emp_name, Salary | C

FROM employee

47

Table 5.6 Accuracy of system for Category L Query

Category L | Total Correct Incorrect
Accuracy queries queries (C) | queries(l)
75% 20 15 5

System Performance for category L query

16

14

12

10 M Correct

H Incorrect

Category L queries

Figure 5.5: System Performance for category L query

Il. Conditional Query: This query includes single query with single condition and single

query with composite or multiple conditions. But composite or multiple conditions is not

48

including in the study with the shortage of time.

C. Single query with single condition(S): includes the rows and columns to be retrieved

based on single condition from a single table as shown in table 5.7 and table 5.8. The

figure 5.6 shows accuracy of system for single condition queries.

Table 5.7 Category single condition(S) queries

No. | User input query System generated query 7]

1 M3 nets CRPTY AUUIQTIRUCT CABTmy kS | select Emp_name,Levell,Salary FROM | C
CmmH AOmmMATY:: employee Where sex ="M

2 m3e nets CFrTY NYUIOTYUCT eC8Fmy WG | select Emp_name,Levell,Salary FROM | C
LqUH fimrm:: employee Where sex ='m™7.£"

3 95T m7& CFF NeTETT NIUIROUH KS FYUUCT | select sex,Emp_name,Salary,Levell | C
LLETmY ANCT:: FROM employee Where sex ='M™72"

4 m3e néts CRFTT PUUERTIRUCT e8Tmt kG | select Levell, Salary FROM employee | |
mCYE h&P Amrm:: Where sex ='M™7£"

5 emye wéts CUFFTT PURIeTgeyct Cl8Tm hG | select Levell,Salary FROM employee | |
mCY%E heP Amm:: Where sex ='?m7 £

6 T OFF ASTETT N9 mCYP heP wS TIRUCT | select sex,Emp_name,Salary,Levell | C
eLETmY ANE:: FROM employee Where sex ="+

7 CoumHTm 3500 AIC &5 Nae eIy ndt5+7% nyo select Salary,Emp_name FROM | C
AONMATY:: employee Where salary >=3500.0

8 CEHTm n 3500 NF+ CIFY Adt8TT N9 &S Me select Emp_name,Hire_date FROM | I
CRMANTY ¢ Amma:: employee Where Hire_date

<='RPPHFO'
9 mCY® n&eTm 5700 CUFrTY net&TY a9 An:: | select Emp_name FROM employee | C
Where salary =5700.0

10 | mCYP? hEPTm 5700 CIFFTT net%TT nY %G | select Emp_name,Position FROM | C
Yadyt amma:: employee Where salary =5700.0

11 | B@E{Fmr 5700 AIC CUFrtT ndt8EFT nU0 &5 @ne | select Emp_name,Position FROM | C

49

&l ANy employee Where salary =5700.0
12 | mCY? hE6OTFTm 3500 &5 nHP NAL CUFr nédt%%7 | select Emp_name,Position FROM
NoY %5 Yadit Ane:: employee Where salary >=3500.0
13 | yadyrTor Cpa€ 8% CIFFTY NSTET NY0 select Position,Collage,Emp_name
Amrma’:: FROM employee ~Where Position
="YAL 1 F O
14 | eTr9uuCT BC&Tm UAtE 8714 CIFY U9 adt5%7% | select Levell,Emp_name FROM
NI AOMAT:: employee Where levell ='?+9°UCtH
15 | eT9nUCT L8 Fm Yats 874 PPy Ba19° adtEF7T | select Levell, Emp_name FROM
nge AmMAY:: employee Where levell ='A0-mMA%'
16 | @TIRULT NEA YALPTF CFFTT A90 w5 CgumH select Dep_name, Position, Emp_name,
Amrma’:: Salary FROM department Where
Position ='¢+92UCT
17 | RwoHTm n 4500 AIC NAL @IFY ndt8FT n90 w5 | select Salary,Emp_name,Emp_id
Couymef RTC AOMAY:: FROM employee Where salary
>4500.0
18 | @TUUUCT LA8Tm A185 8714 O Lni9° ad %%y |select Levell, Emp_name FROM
Ao™ AmmAy:: employee Where levell =A®MATY
19 | eTSt HC4Tm U7 Oy A&TETY N0 &S CoumH select Emp_name, Salary FROM
Armas:: employee Where '0hq+
20 | emmHTm n 4500 AIC NAL @IFY net&FS MU0 %5 | select Salary,Emp_id FROM employee

Coudme P ©TC ADMAT::

Where salary >=4500.0

Table 5.8 Accuracy of system for Category S Query

Category S | Total Correct Incorrect
Accuracy queries gueries (C) | queries(l)
50% 20 10 10

50

System Performance for category S query

10

i Correct

M Incorrect

Category S queries

Figure 5.6 System Performance for category S query

I1l. Join Queries (J): Join queries include joining of two or three tables. The query can have

only single conditions as shown in table 5.9 and table 5.10 and, figure 5.7 shows the

performance and accuracy of the system for Join queries.

Table 5.9 category of] Queries

aAne::

No. | User input query System generated query C/l

1 Aot T/hea wets PR AI° Amrm:: select Dep_name,Emp_name FROM | C
Department INNER JOIN Employee
ON Employee.DEP_ID =
Department.DEP_ID Where
Dep_name ='Ah@-y+t 37"

2 TIOUCT heATmr Aot CFr wét5T T nyo select Dep_name,Emp name FROM | C

51

Department INNER JOIN Employee
ON Employee.DEP_ID =

Department.DEP_ID Where
dep_name ="Ah@t 37’
Aot T9OUCT HCE @097 wetET PRy ngv | select Emp_name FROM
HCHE AR Department INNER JOIN Employee
ON Employee.DEP_ID =
Department.DEP_ID Where

Dep_name ='Ah@t 37"

anm LT T9UCT h&d néts CIFrT Ny
AMAT::

select Dep_name,Emp_name FROM
Department INNER JOIN Employee
ON Employee.DEP_ID =
Department.DEP_ID Where

Dep_name ='Ah@+ 57"

TO0UCT heaTm ano L1 Py Cwét5+% Py
HCHC AmmaAs::

select Dep_name FROM Department
INNER JOIN Employee ON
Employee.DEP_ID =
Department.DEP_ID Where
dep_name ="AN@7t77"

einm LT TYCUCT hEA néts CPRTY
YaLyt:RmmH &5 N9° Ammat::

select

Dep_name,Position,Salary,Emp_name
FROM Department INNER JOIN
Employee ON Employee.DEP_ID =
Department.DEP_ID Where

Dep_name ='"?AN@t°71'

eMICS &5 T4 TC Ae7h P& 875
CPFT I NI RFetPmeNTY T BS CTIOUCT
elEmMT AMAT::

select Collage, Emp_name, sex,

Hire_date,Levell FROM Where

Hire_date ='?1NCY"

myem3T TIUCT h&d nets CPrTT nJ° &S
TIOUCT CA8TmT ADMAT::

select Dep_name,Emp_name,Levell
FROM Department INNER JOIN

52

Employee ON Employee.DEP_ID =
Department.DEP_ID Where

Dep_name ='9%8-an% ¢!

9 enetET T N9 HCHC &S TI%UCT heATm? select Emp_name,Dep_name FROM
Amrmay:: Department INNER JOIN Employee
ON Employee.DEP_ID =
Department.DEP_ID
10 | enet8FT N9OIRFIQTemeNty ¢ select Emp_name, sex, Hire_date,
gi;i;":"’:m‘:“":;qcmr’ QuiCAt &S eTIOuCt University, Levell FROM
EMP_EDUCATION INNER JOIN
Employee ON
EMP_EDUCATION.EMP_ID =
Employee.EMP_ID INNER JOIN
Department ON Employee.DEP_ID =
Department.DEP_ID
11 | end 8T T a90H00YCT hed %S CoomH ammat:: | select Emp_name,Dep_name,Salary
FROM Department INNER JOIN
Employee ON Employee.DEP_ID =
Department.DEP_ID
12 | eTouuCtT ee8Tm A78% S°¢4 Oy Uay9 ndt5F7 | select Levell, Emp_name, Dep_name
g S TIOUCT hEa AmmA: FROM Department INNER JOIN
Employee ON Employee.DEP_ID =
Department.DEP_ID Where
Dep_name ="A0»MA7Y'
13 | endtEF Y A% HOHE NITIRUCT hEATm Amma:: | select Emp_name,Dep_name FROM
Department INNER JOIN Employee
ON Employee.DEP_ID =
Department.DEP_ID
14 | eneTEFT NI RFOtemeNty ¢ A TCTm Yt w5 | select Emp_name,sex,Hire_date,Levell

eTIoUCT L8 TmY AOrMAaT::

FROM Department INNER JOIN

53

Employee ON Employee.DEP_ID =
Department.DEP_ID

15 | ene %% T n92 #S TINUCT hEATDY AmrmAaT:: select Emp_name,Dep_name FROM
Department INNER JOIN Employee
ON Employee.DEP_ID =
Department.DEP_ID
16 | fqmHTm 4500 AC CIFY CA&TETT MY 7S select Salary,Emp_id FROM
Coufmel RTC ATMAT:: employee Where salary =4500.0
17 | ewmHTmr n 4500 AIC NAe OIFY net5+7 select Salary, Emp_name, Emp_id,
NYP:Quuime e ®TC w5 TINULT hEA ADMAT:: Dep_name FROM Department
INNER JOIN Employee ON
Employee.DEP_ID =
Department.DEP_ID Where salary
>4500.0
18 | enet5FT mua P90 %G TINUCT hEA ADMAT:: select Dep_name FROM Department
INNER JOIN Employee ON
Employee.DEP_ID =
Department.DEP_ID
19 | eAdtET T oo NIY FQOROYLNTTY QLACAT &S select Emp_name, University,
TIMICT hEA AMMAT:: Dep_name FROM
EMP_EDUCATION INNER JOIN
Employee ON
EMP_EDUCATION.EMP_ID =
Employee.EMP_ID INNER JOIN
Department ON Employee.DEP_ID =
Department.DEP_ID
20 | @nSTETT oua A0 FQOUOYLNTY QLACAE WS pa& | select Emp_name,University,Collage

AMAT::

FROM EMP_EDUCATION INNER
JOIN Employee ON
EMP_EDUCATION.EMP_ID =

54

Employee.EMP_ID

Table 5.10 Accuracy of system for Category J Query

Category L | Total Correct Incorrect
Accuracy queries queries (C) | queries(l)
65% 20 13 7

System performances for category J query

14

12

10

H Correct
8 H ct

Category J queries

Figure 5.7 System performances for category J query

55

5.3.3 Category wise Accuracy

The effectiveness of the category wise question system is measured in terms of accuracy
measurement as shown in figure 5.8.

80

70 -

60 -

50 -
M category L
40 -
M category S

30 - W category J
20 -

10 A

category wise accuracy

Figure 5.8 System performances for category wise accuracy

5.3.4 Analysis according to user category

We have tested our prototype system taking different users who are not aware of database
concepts and also the users who are aware of database concepts. The figure 9 shows the accuracy
level of system in terms of correct queries, incorrect queries and partially correct queries

according to user groups.

56

25

m correct

m incorrect

udb(users who are aware of undb(user no aware of sql)
database concepts)

Figure 5.9 System performances for User category

5.3.5 Overall measurement

The overall accuracy of the ALIDB system is based on how many SQL queries are generated by

system is correct as per user’s judgment. It is given by

Overall accuracy of correct

gueries=total number of correct queries ~+ total number of inputted queries

=38/60
=0.633

=63.3%

57

overall accurecy

m correct

® incorrect

Figure 5.10 Allover system performances
5.4 SUMMARY

This chapter generally discussed the prototype implementation of ALIDB system within their
question categories. It also shows accuracy and its measurement in terms of correct and incorrect
queries for each query category. Finally, it discusses the user group wise accuracy and overall

accuracy of the ALIDB system.

58

Chapter-6

Conclusions and Future Works
6.1 Conclusion

The thesis has been proposed Amharic Language Interface to Database. It demonstrated the
integration of various techniques that can enhance the accuracy of the (Natural to Formal
language) translation process or translation of unstructured query sentences to structure one. It
also tries to improve user interface so that user can enter the query in free form without any

restriction but it is also use Amharic language or enter only Amharic query sentences.

The basic objective of the study is to improve human computer interface while accessing the
structured data from the database by using their native language or Amharic language. The user
enter Amharic query sentences, the sentences tokenize with each word and mapped each token
word from system dictionary and handle table_name, column_name, select key word, where key

word , operator and values from the tokenized word and generate the structure query sentences.

However, if the user enters very few words or is not enter full sentences in query and if those
words or sentences are difficult to analyze for words sense disambiguation due to handling of
table_name, column_name, select key word, where key word, operator and values, then the

system either may not be able to generate such queries or it may produce partial output.

59

6.2 Future Works
The following areas of ALIDB can be considered for future work:

e To execute queries that involves or executes insert, update and delete data from database

e To execute queries that includes aggregate functions (i.e. sum (), max (), average) and
DDL (like alter, drop, create types of queries) statements.

e To add the future to execute queries that include group by, Order by and having clauses.

e To add the future to work on independent queries and different domains

e To design the approach of ALIDB in such a way that is not dependent on database

e To design the approach of ALIDB in such a way that is in linguistic part

60

Reference

10.

Shish Kumar and Kunwar Singh Vaisla, Hindi Language Interface to Database using
Semantic Matching, 2014, India

Rajender Kumar, MohitDua, Shivani Jindal, “Domain-Independent Hindi Language
Interface to Relational Database”, international conference on computation of power,

energy, information and communication (ICCPEIC), 2014,India

K.Murugan and T. Ravichandran, Intelligent Query Interface for Temporal Database with
Natural Language Processing using Efficient Context Free Grammar, Karpagam
University,2012.

UmairShafique and Haseeb Qaiser, “A Comprehensive Study on Natural Language
Processing and Natural Language Interface to Databases,” International Journal of
Innovation and Scientific Research ISSN 2351-8014 Vol. 9 No. 2 Sep. 2014, pp. 297-
306,University of Gujrat

Ashish Kumar and Kunwar Singh Vaisla, ARTICLE - MAY 2013, Natural Language
Interface to Databases: Development Techniques, India

NeeluNihalani, Mahesh Motwani and Sanjay Silakari, An Intelligent Interface for
relational databases, 2014, Indian.

Rohini B. Kokare,Kirti H. Wanjale,2014, A Survey of Natural Language Query Builder
Interface for Structured Databases using Dependency Parsing, SavitribaiPhule Pune

University
Himani Jain,Hindi language interface in database ,M.S thesis paper, Indian,2011

Chong Wang, Miao Xiong, Qi Zhou and Yong Yu, A Portable Natural Language
Interfaceto Ontologies,2014,Shanghai JiaoTong University

Androutsopoulos, G.D. Ritchieand P. Thanisch,1995,Natural Language Interfaces to

Databases — An Introduction, University of Edinburgh

61

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abhijeet Gupta, December, 2013, Complex Aggregates In Natural Language Interface To

Databases. Indian

Mahesh Singhl, Nikita Bhati, 2014, A Noval Hindi language interface for databases.
India

Arati K. Deshpandel and Prakash. R. Devale, “ natural language query processing using
probabilistic context free grammar”, International Journal of Advances in Engineering &

Technology, May 2012. India.

B.Sujatha, S.ViswanadhaRaju and Humera Shaziya,2012,A Survey of Natural Language

Interface to Database Management System, J.N.T.University

Ann Copestake and Karen Sparc k Jones,1989,Natural Language Interfaces to Databases,

University of Cambridge

Himani Jain, Parteek Bhatia, Hindi language interface to databases ,Journal of Global

Research in Computer Science ,Volume 2, No. 4, April 2011,,Indian

AksharBharati,Y. Krishna Bhargava, Rajeev Sanga,2014, Reference and Ellipsis in an

Indian Languages Interface to Databases, Indian

MohitDua, Shivani Jindal, and Rajender Kumar, An Architectural Overview of Natural
Language Interface to Knowledge Base,2014 international conference on computation of

power, energy, information and communication, Indian

BentamarHemerelain, Hafida Belbachir,2010,Semantic Analysis of Natural Language

Queries for an Object Oriented Database ,University of Science and Technology of Oran

GauriRao, ChanchalAgarwal, SnehalChaudhry, Nikita Kulkarni, and Dr. S.H. Patil,
natural language query processing using semantic grammar International Journal on
Computer Science and Engineering Vol. 02, No. 02, 2010, 219-223,Indian

A. Kaur, and P. Bhatiya, “Punjabi Language Interface to Database”, M.tech thesis,
Department of CSED, Thapar University, 2010

62

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

Manju Mony, Jyothi M. Rao and Manish M. Potey, “An Overview of NLIDB Approaches
and Implementation for Airline Reservation System” International Journal of Computer
Applications (0975 — 8887) Volume 107 — No 5, December 2014, Dept. of Computer
Engineering K. J. Somaiya CoE Vidyavihar, Mumbai

Neelu Nihalani , Sanjay Silakari , Mahesh Motwani, “Natural language Interface for
Database: A Brief review”, IJCSI International Journal of Computer Science Issues, Vol.
8, Issue 2, March 2011, Bhopal, MP India

Abhijeet R. Sontakkel,and Amit Pimpalkar, “A Review Paper on Hindi Language
Graphical User Interface to Relational Database using NLP” International Journal of
Advanced Research in Computer Engineering & Technology (IJARCET) Volume 3 Issue
10, October 2014

Yohan Chandra, “natural language interfaces to databases”, December 2006, University of

north texas ,Ms thesis.

Neelu Nihalani, Mahesh Motwani and Sanjay Silakari, “Natural Language Interface to
Database using Semantic Matching”, International Journal of Computer Applications
(0975 —8887) Volume 31- No.11, October 2011.

Amandeep Kaur, “punjabi language interface to database”, Computer science and

engineering department thapar university, Ms thesis ,June 2010

Neelu Nihalani, Mahesh Motwani and Sanjay Silakari, “N NIHALANI et al: an
intelligent interface for relational databases” IJSSST, Vol. 11, No. 1, Bhopal, MP, India

Nikita Bhati and, Mahesh Singh, “Research on Analysis of Hindi language Graphical user
Interface”, international journal of engineering sciences & research
technology Bhati et al. , 3(8): August, 2014, Student, AITM., Palwal, India

http://zrftech.blogspot.com/2012/12/java-se-development-kit-7-documentation.html / 27-
Jan- 2015

Gregg Petri,A comparison of Oracle and MYSQL,SELECT Journal 1% Qtr.2005

63

http://zrftech.blogspot.com/2012/12/java-se-development-kit-7-documentation.html%20/

32.

33.

34.

35.

36.

37.

38.

39.

Rashid Ahmad, Mohammad Abid Khan and Rahman Ali, “Efficient Transformation of a
Natural Language Query to SQL for Urdu”, Proceedings of the Conference on Language
and technology, 2009.

Jadhav Sneha, Raut Shubhangi and A.S.Zore, “Natural Language to Database Interface”,
International Journal of Advanced Research in Computer and Communication

Engineering Vol. 3, Issue 2, February 2014, India.

Rajender Kumar and Manish Kumar, “A Comprehensive Study of Natural Language
Interface to Database”, International Journal of Advance Foundation and Research in
Science and Engineering (IJAFRSE) Volume 1, Issue 1, June 2014, NIT Kurukshetra.

Pooja A.Dhomne, Sheetal R.Gajbhiye, Tejaswini S.Warambhe and Vaishali B.Bhagat,
“Accessing database using NLP”, IJRET: International Journal of Research in Engineering
and Technology Volume: 02 Issue: 12 | Dec-2013 page 589-594.

K. Shabaz, Jim D. O'Shea, Member, IEEE, Keeley A. Crockett, Senior Member, IEEE, A.
Latham, Member, IEEE, “Aneesah: A Conversational Natural Language Interface to
Databases”, Proceedings of the World Congress on Engineering 2015 Vol I WCE 2015,
July 1 - 3, 2015, London, U.K.

Aanchal Kataria and Rajender Nath, “Natural Language Interface for Databases in Hindi
Based on Karaka Theory”, International Journal of Computer Applications (0975 — 8887)
Volume 122 — No.7, July 2015, Kurukshetra, Haryana, India.

Fei Li and H. V. Jagadish “Constructing an Interactive Natural Language Interface for
Relational Databases” Proceedings of the VLDB Endowment, Vol. 8, No. 1
Copyright 2014 VLDB Endowment 2150-8097/14/09.

Jasmeen Kaur , Bhawna chauhan and Jatinder Kaur Korepal, “Implementation of Query
Processor Using Automata and Natural Language Processing”, International Journal of

Scientific and Research Publications, VVolume 3, Issue 5, May 2013

64

40.

41.

42.

43.

44,

Yilmaz, Ekrem Caglar, “a Turkish natural language interface for the semantic
web:” a case study on Turkish universities, MSc Thesis paper August 2008, 42 pages,

Atilim university.

Noam Chomsky (1965), Aspects of the Theory of Syntax, M.L.T. Press, Cambridge,
Massachusetts.

http://www.google.images.com , 20-Feb- 2015.

Madeleine Bates (1995), Model of Natural language understanding, in proceeding of
national academic science, USA, vol.92, Oct 1995.

Steven Bird, Ewan Klein, Edward Loper, (2008), Book on Natural language Processing
with Python, O’Reilly publication.

65

http://www.google.images.com/

Appendices

Appendices 1: Mapping tables for column handler

Token words Mapped words
YALPF Position
SALPT Position
UALPTF Position
hALPT Position
PNe &CA Position
PG BCA Position
MCYP n&p Salary
IAL 13T Position
UAL 1T Position
YAL 13T DT Position
AhAL T FTFOT Position
NTF@-7 Emp_name
MAHFEM-Y Emp_name
MCYP h&ePFm-7 Salary
PTIRUCT BB Levell
TRUCT heAF®Y Dep_name
IALTT Position
UALTt Position
AhALTF Position
YALTF Position
A Sex
_FFMD Sex

PO FMEP M LFOT Emp_id
t+PMma Hire_date
T/N&4A Dep_name
4D P &MC Emp_id

ao M P M oFm- Emp_id
aoAP € Emp_id
AP Mo FO- Emp_id
hge Emp_name
Ve Emp_name
N Fao- Emp_name
AT MD- Emp_name
2 Sex

P T Sex
FIRUCHT B2 Levell
PTIRUCT BB Levell
PHIRUCT BLEFO- Levell
Pt+Pmint ¢ Hire_date
PPML T Hire_date

66

PtPmeNt $7 Hire_date
TIPUCT N&A Dep_name
PHIPUCT N&A Dep_name
FIRUCT NEATD- Dep_name
PHIPUCT NEATM- Dep_name
PMTm P+IRUCT ALY Field_study
Pt/ PHIRUCTALTT Field_study
M+ 0FIRULT AR Field_study
P+a94. Y PTIRUCT ARy | Field_study
YA4 Position
UAL Position
AL Position
1AL Position
UALPTF Position
YALPTF Position
hALPT Position
YALPF Position
YAL1T Position
UALTT Position
AhALTT Position
1AL Position
YAL 1 FFar- Position
UAL T T Position
AhAL 1T Position
AL O Position

Appendices 2: Sample codes

public class SelectStatement implements Serializable {

private static final long serialVersionUID = 1L;

private Long id;

public static String sgqlValue ="";

public ResultSet selectTableName(String tokenaized) {

try {

DBConnection connection = new DBConnection();

ResultSet _rs = null;

OraclePreparedStatement ops;

67

String _select = "SELECT UNIQUE MAPPED_WORD from TABLE_HANDLER
WHERE TOKEN_WORD LIKE ?*;

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
ops.setString(1, "%" + tokenaized);
_rs = ops.executeQuery();
return _rs;
} catch (Exception e) {

return null;

}

public ResultSet selectWhereColumnHandler(String tokenaized) {
try {
DBConnection connection = new DBConnection();
ResultSet _rs = null,
OraclePreparedStatement ops;

String _select = "SELECT UNIQUE MAPPED_WORD from Wherecolumn_handler
WHERE TOKEN_WORD LIKE ? *;

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

ops.setString(1, "%" + tokenaized);

_rs = ops.executeQuery();

return _rs;

} catch (Exception e) {

68

return null;

ks

public ResultSet selectColumnName(String tokenaized) {
try {
DBConnection connection = new DBConnection();
ResultSet _rs = null;
OraclePreparedStatement ops;

String _select = "SELECT UNIQUE MAPPED_WORD from COLUMN_HANDLER
WHERE TOKEN_WORD LIKE ?*;

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
ops.setString(1, "%" + tokenaized);
_rs = ops.executeQuery();
return _rs;
} catch (Exception e) {

return null;

by

public ResultSet selectWhereName(String tokenaized) {
try {
DBConnection connection = new DBConnection();
ResultSet _rs = null;

OraclePreparedStatement ops;

69

String _select = "SELECT UNIQUE MAPPED_WORD from WHERE_CONDITION
WHERE TOKEN_WORD LIKE ?*;

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
ops.setString(1, "%" + tokenaized);
_rs = ops.executeQuery();
return _rs;
} catch (Exception e) {

return null;

}

public ResultSet selectSelectName(String tokenaized) {
try {
DBConnection connection = new DBConnection();
ResultSet _rs = null,
OraclePreparedStatement ops;

String _select = "SELECT UNIQUE MAPPED_WORD from SQL_ WORD WHERE
TOKEN_WORD LIKE ?";

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

ops.setString(1, "%" + tokenaized + "%");

_rs = ops.executeQuery();

return _rs;

} catch (Exception e) {

70

return null;

ks

public ResultSet selectConditionName(String tokenaized) {
try {
DBConnection connection = new DBConnection();
ResultSet _rs = null;
OraclePreparedStatement ops;

String _select = "SELECT UNIQUE MAPPED_WORD from
CONDITIONAL_WORDHANDLER WHERE TOKEN_WORD LIKE ? ",

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
ops.setString(1, "%" + tokenaized);
_rs = ops.executeQuery();
return _rs;
} catch (Exception e) {

return null;

by

public ResultSet selectValuesFromAll(List<String> Istbl, List<String> IsCol, List<String>
Iswhere, List<String> Iswherecolumn, List<String> Issele,List<String> Isnumber,String
operator, List<String> Istokonized) throws SQLException {

String COLUMN ="";
String TABLES ="";

String WHERE =",

71

String OPRATORS ="=",
String SELECT =",
String WHERECOL ="";
String tree = "";

String department = "', emp_education ="', employee = "";
intk=1;
if (IsCol.isEmpty()) {
COLUMN = "*";
}else {
for (inti = 0; i < IsCol.size(); i++) {
if (k ==IsCol.size()) {
COLUMN += IsCol.get(i) + " ";
}else {
COLUMN += IsCol.get(i) +",";

¥
k++;
k
¥
k=1,

if (Istbl.size() == 1) {
for (inti=0; i < Istbl.size(); i++) {
if (k == Istbl.size()) {

TABLES += Istbl.get(i) + " *;

K++;

72

}
} else if (Istbl.size() == 2) {
for (inti=0; i < Istbl.size(); i++) {
if (Istbl.get(i).equalsignoreCase(""department")) {
department = Istbl.get(i) + " *;
} else if (Istbl.get(i).equalsignoreCase("employee™)) {
employee = Istbl.get(i) + " ";
} else if (Istbl.get(i).equalsignoreCase("emp_education™)) {

emp_education = |Stb|.get(i) +

¥
if (lfemployee.equals(") && !department.equals(""’))

TABLES =" Department INNER JOIN Employee ON Employee.DEP_ID =
Department.DEP_ID *;

} else if (lemployee.equals(") && lemp_education.equals(™)) {

TABLES =" EMP_EDUCATION INNER JOIN Employee ON
EMP_EDUCATION.EMP_ID = Employee.EMP_ID "

}else {
TABLES += department + " " + employee + " " + emp_education + " **;
k
} else if (Istbl.size() == 3) {TABLES = "EMP_EDUCATION INNER JOIN Employee ON

EMP_EDUCATION.EMP_ID =" + "Employee.EMP_ID INNER JOIN Department ON
Employee.DEP_ID = Department.DEP_ID *;

}
for (int i = 0; i < Iswhere.size(); i++) {

WHERE += Iswhere.get(i) + " ",

73

for (int i = 0; i < Iswherecolumn.size(); i++) {
WHERECOL += Iswherecolumn.get(i) + " *;

¥

for (inti=0; 1 < Issele.size(); i++) {
SELECT += Issele.get(i) + " *;

¥

String _select ="",

String condition =",

List<String> Istcharactor = new ArrayList<>();

List<Double> Istnumber = new ArrayList<>();

for (int i = 0; i < Iswherecolumn.size(); i++) {
WHERECOL += Iswherecolumn.get(i) + " *;
condition = Iswherecolumn.get(i) + " " + operator + " " + ™ ?"

if (Iswherecolumn.get(i).contains("salary") || Iswherecolumn.get(i).contains("age")) { ||
Istwherecolumn.get(i).contains("Hire_date™)

condition = Iswherecolumn.get(i) + " " + operator;

}else {

condition = Iswherecolumn.get(i) + " " + operator;

¥
for (inti = 0; i < Istokonized.size(); i++) {
if (Istokonized.get(i).matches(".*\\d.*")) {

Istnumber.add(Double.parseDouble(Istokonized.get(i)));
}else {

74

Istcharactor.add(Istokonized.get(i));

Y %
try {

DBConnection connection = new DBConnection();
ResultSet _rs = null,
OraclePreparedStatement ops;
if 'WHERE.equals(™")) {
if (condition.contains(*'salary") || condition.contains("age™)) {
for (int j = 0; J < Istnumber.size(); j++) {
_select ="";

_select = SELECT + "™ + COLUMN + " + "FROM " + TABLES + " + WHERE +"" +
condition + " + Istnumber.get(j);

sqlValue = SELECT +"" + COLUMN +"" +"FROM " + TABLES +" " + WHERE + " " +
condition + " + Istnumber.get(j);

System.out.printin(_select);
ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

_rs = ops.executeQuery();

if (_rs.next()) {

return _rs;

}
}else {

for (int j = 0; j < Istcharactor.size(); j++) {

75

_select=""";

_select = SELECT + """ + COLUMN +"" + "FROM " + TABLES + """ + WHERE
+"" + condition + "™ + Istcharactor.get(j) + """

sqlValue = SELECT + " " + COLUMN + " " + "FROM " + TABLES + " " + WHERE + " " +
condition + ™" + Istcharactor.get(j) + ";

System.out.printin(_select);
ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

_rs = ops.executeQuery();

if (_rs.next()) {

return _rs;

}

_select =SELECT +" "+ COLUMN +" " + "FROM " + TABLES +" " + WHERE + " " +
condition;

/I System.out.printIn(condition);
ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
if (condition.contains(*'salary") || condition.contains("age™)) {
for (int 1= 1; i <= Istnumber.size() * IsCol.size();) {

for (int j = 0; j < Istnumber.size(); j++) {

76

ops.setDouble(1, Istnumber.get(j));

}
}else {

for (int i = 1; i <= Istcharactor.size() * IsCol.size();) {
for (int j = 0; j < Istcharactor.size(); j++) {
ops.setString(1, Istcharactor.get(j));

i++;

}

_rs = ops.executeQuery();

if (_rs.next()) {

return _rs;
}else {

_select=SELECT +" "+ COLUMN +"" +"FROM " + TABLES + " ";

System.out.printin(_select);

ops = (OraclePreparedStatement) connection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

_rs = ops.executeQuery();

return _rs;

¥

}else {
_select =SELECT +""+ COLUMN +"" +"FROM " + TABLES +" *;

77

sglValue = SELECT +" " + COLUMN +" " + "FROM " + TABLES + " ";
System.out.printin(_select);
ops = (OraclePreparedStatement) DBConnection.con.prepareStatement(_select,
ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
_rs = ops.executeQuery();
return _rs;
} }
catch (SQLEXxception e) {
System.out.printin(e.getSQLState());
System.err.printin(e.getMessage());

return null;

P

78

