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Chapter One 

1. Introduction to Data Structures and Algorithms Analysis 

A program is written in order to solve a problem. A solution to a problem actually consists of two things: 

 A way to organize the data 

 Sequence of steps to solve the problem 

 

The way data are organized in a computer’s memory is said to be Data Structure and the sequence of 

computational steps to solve a problem is said to be an algorithm. Therefore, a program is nothing but 

data structures plus algorithms. 

1.1. Introduction to Data Structures 

Given a problem, the first step to solve the problem is obtaining ones own abstract view, or model, of the 

problem. This process of modeling is called abstraction. 

 

 
 

The model defines an abstract view to the problem. This implies that the model focuses only on problem 

related stuff and that a programmer tries to define the properties of the problem.  

 

These properties include  

 The data which are affected and  

 The operations that are involved in the problem.  

With abstraction you create a well-defined entity that can be properly handled. These entities define the 

data structure of the program.  
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An entity with the properties just described is called an abstract data type (ADT).  

1.1.1. Abstract Data Types 

An ADT consists of an abstract data structure and operations. Put in other terms, an ADT is an abstraction 

of a data structure. 

 

The ADT specifies: 

1. What can be stored in the Abstract Data Type 

2. What operations can be done on/by the Abstract Data Type. 

For example, if we are going to model employees of an organization: 

 This ADT stores employees with their relevant attributes and discarding irrelevant attributes. 

 This ADT supports hiring, firing, retiring, … operations. 

 

A data structure is a language construct that the programmer has defined in order to implement an abstract 

data type.  

 

There are lots of formalized and standard Abstract data types such as Stacks, Queues, Trees, etc. 

 

Do all characteristics need to be modeled? 

Not at all 

 It depends on the scope of the model 

 It depends on the reason for developing the model 

1.1.2. Abstraction 

Abstraction is a process of classifying characteristics as relevant and irrelevant for the particular purpose 

at hand and ignoring the irrelevant ones. 

Applying abstraction correctly is the essence of successful programming 

How do data structures model the world or some part of the world? 

 The value held by a data structure represents some specific characteristic of the world 

 The characteristic being modeled restricts the possible values held by a data structure 

 The characteristic being modeled restricts the possible operations to be performed on the data 

structure. 

Note: Notice the relation between characteristic, value, and data structures 

Where are algorithms, then?  

1.2. Algorithms 

An algorithm is a well-defined computational procedure that takes some value or a set of values as input 

and produces some value or a set of values as output. Data structures model the static part of the world. 

They are unchanging while the world is changing. In order to model the dynamic part of the world we 

need to work with algorithms. Algorithms are the dynamic part of a program’s world model.  
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An algorithm transforms data structures from one state to another state in two ways: 

 An algorithm may change the value held by a data structure 

 An algorithm may change the data structure itself 

 

The quality of a data structure is related to its ability to successfully model the characteristics of the 

world. Similarly, the quality of an algorithm is related to its ability to successfully simulate the changes in 

the world.  

 

However, independent of any particular world model, the quality of data structure and algorithms is 

determined by their ability to work together well. Generally speaking, correct data structures lead to 

simple and efficient algorithms and correct algorithms lead to accurate and efficient data structures. 

1.2.1. Properties of an algorithm 

• Finiteness: Algorithm must complete after a finite number of steps. 

• Definiteness: Each step must be clearly defined, having one and only one interpretation. At 

each point in computation, one should be able to tell exactly what happens next. 

• Sequence: Each step must have a unique defined preceding and succeeding step. The first step 

(start step) and last step (halt step) must be clearly noted. 

• Feasibility: It must be possible to perform each instruction. 

• Correctness: It must compute correct answer for all possible legal inputs. 

• Language Independence: It must not depend on any one programming language. 

• Completeness: It must solve the problem completely. 

• Effectiveness: It must be possible to perform each step exactly and in a finite amount of time. 

• Efficiency: It must solve with the least amount of computational resources such as time and 

space. 

• Generality: Algorithm should be valid on all possible inputs. 

• Input/Output: There must be a specified number of input values, and one or more result 

values. 

1.2.2. Algorithm Analysis Concepts 

Algorithm analysis refers to the process of determining the amount of computing time and storage space 

required by different algorithms. In other words, it’s a process of predicting the resource requirement of 

algorithms in a given environment. 

In order to solve a problem, there are many possible algorithms. One has to be able to choose the best 

algorithm for the problem at hand using some scientific method. To classify some data structures and 

algorithms as good, we need precise ways of analyzing them in terms of resource requirement. The main 

resources are: 

 Running Time 

 Memory Usage 
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 Communication Bandwidth 

Running time is usually treated as the most important since computational time is the most precious 

resource in most problem domains. 

There are two approaches to measure the efficiency of algorithms: 

• Empirical: Programming competing algorithms and trying them on different instances. 

• Theoretical: Determining the quantity of resources required mathematically (Execution time, 

memory space, etc.) needed by each algorithm. 

However, it is difficult to use actual clock-time as a consistent measure of an algorithm’s efficiency, 

because clock-time can vary based on many things. For example, 

 Specific processor speed 

 Current processor load 

 Specific data for a particular run of the program 

o Input Size 

o Input Properties 

 Operating Environment 

Accordingly, we can analyze an algorithm according to the number of operations required, rather than 

according to an absolute amount of time involved. This can show how an algorithm’s efficiency changes 

according to the size of the input. 

 

1.2.3. Complexity Analysis 

Complexity Analysis is the systematic study of the cost of computation, measured either in time units or 

in operations performed, or in the amount of storage space required. 

 

The goal is to have a meaningful measure that permits comparison of algorithms independent of operating 

platform. 

There are two things to consider: 

 Time Complexity: Determine the approximate number of operations required to solve a problem 

of size n. 

 Space Complexity: Determine the approximate memory required to solve a problem of size n. 

 

Complexity analysis involves two distinct phases: 

 Algorithm Analysis: Analysis of the algorithm or data structure to produce a function T (n) that 

describes the algorithm in terms of the operations performed in order to measure the complexity of 

the algorithm. 

 Order of Magnitude Analysis: Analysis of the function T (n) to determine the general 

complexity category to which it belongs. 

 

There is no generally accepted set of rules for algorithm analysis. However, an exact count of operations 

is commonly used. 
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1.2.3.1. Analysis Rules: 
1. We assume an arbitrary time unit. 

2. Execution of one of the following operations takes time 1: 

 Assignment Operation 

 Single Input/Output Operation 

 Single Boolean Operations 

 Single Arithmetic Operations 

 Function Return 

3. Running time of a selection statement (if, switch) is the time for the condition evaluation + the 

maximum of the running times for the individual clauses in the selection. 

4. Loops: Running time for a loop is equal to the running time for the statements inside the loop * 

number of iterations.  

The total running time of a statement inside a group of nested loops is the running time of the 

statements multiplied by the product of the sizes of all the loops. 

For nested loops, analyze inside out. 

 Always assume that the loop executes the maximum number of iterations possible. 

5. Running time of a function call is 1 for setup + the time for any parameter calculations + the time 

required for the execution of the function body. 

Examples: 

1. int count(){  

    int k=0;  

    cout<< “Enter an integer”; 

    cin>>n; 

    for (i=0;i<n;i++) 

k=k+1; 

    return 0;} 

 Time Units to Compute 

------------------------------------------------- 

1 for the assignment statement:   int k=0 

1 for the output statement. 

1 for the input statement. 

In the for loop: 

 1 assignment, n+1 tests, and n increments. 

 n loops of 2 units for an assignment, and an   addition. 

 1 for the return statement. 

------------------------------------------------------------------- 

T (n)= 1+1+1+(1+n+1+n)+2n+1 = 4n+6 = O(n) 
2. int total(int n) 

    { 

    int sum=0; 

    for (int i=1;i<=n;i++) 

          sum=sum+1; 

     return sum; 

     } 

Time Units to Compute 

------------------------------------------------- 
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1 for the assignment statement:   int sum=0 

In the for loop: 

 1 assignment, n+1 tests, and n increments. 

 n loops of 2 units for an assignment, and an   addition. 

 1 for the return statement. 

------------------------------------------------------------------- 

T (n)= 1+ (1+n+1+n)+2n+1 = 4n+4 = O(n) 
 

3. void func() 

    {    

    int x=0; 

    int i=0; 

    int j=1; 

    cout<< “Enter an Integer value”; 

    cin>>n; 

    while (i<n){ 

        x++; 

         i++; 

     } 

    while (j<n) 

     { 

         j++;     

     } 

  } 

Time Units to Compute 

------------------------------------------------- 

1 for the first assignment statement:  x=0; 

1 for the second assignment statement: i=0; 

1 for the third assignment statement: j=1; 

1 for the output statement. 

1 for the input statement. 

In the first while loop: 

 n+1 tests 

 n loops of 2 units for the two increment (addition) operations 

In the second while loop: 

 n tests 

 n-1 increments 

------------------------------------------------------------------- 

T (n)= 1+1+1+1+1+n+1+2n+n+n-1 = 5n+5 = O(n) 
4. int sum (int n) 

   { 

    int partial_sum = 0; 

    for (int i = 1; i <= n; i++) 

 partial_sum = partial_sum +(i * i * i); 

    return partial_sum; 

   } 

Time Units to Compute 



Compiled By Habtewold Desta Page 7 
  

------------------------------------------------- 

 1 for the assignment. 

 1 assignment, n+1 tests, and n increments. 

 n loops of 4 units for an assignment, an   addition, and two multiplications. 

 1 for the return statement. 

------------------------------------------------------------------- 

T (n)= 1+(1+n+1+n)+4n+1 = 6n+4 = O(n) 

 

1.2.3.2. Formal Approach to Analysis 
 

In the above examples we have seen that analysis is a bit complex. However, it can be simplified by using 

some formal approach in which case we can ignore initializations, loop control, and book keeping. 

 

for Loops: Formally 

• In general, a for loop translates to a summation. The index and bounds of the summation are the 

same as the index and bounds of the for loop. 

 

• Suppose we count the number of additions that are done. There is 1 addition per iteration of the 

loop, hence N additions in total. 

 

Nested Loops: Formally 

• Nested for loops translate into multiple summations, one for each for loop. 

 

 

• Again, count the number of additions. The outer summation is for the outer for loop. 

 

Consecutive Statements: Formally 

• Add the running times of the separate blocks of your code 

for (int i = 1; i <= N; i++) {

sum = sum+i;

}

N
N

i


1

1

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= M; j++) {

sum = sum+i+j;

}

}

MNM
N

i

N

i

M

j

222
11 1
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Conditionals: Formally 

• If (test) s1 else s2: Compute the maximum of the running time for s1 and s2. 

 
 

Example: 

 

Suppose we have hardware capable of executing 106 instructions per second. How long would it take to 

execute an algorithm whose complexity function was: 

T (n) = 2n2 on an input size of n=108? 

The total number of operations to be performed would be T (108): 

 

T(108) = 2*(108)2 =2*1016 

The required number of seconds    

required would be given by    

 T(108)/106 so: 

 

Running time =2*1016/106 = 2*1010 

The number of seconds per day is  86,400 so this is about 231,480 days (634 years). 

 

Exercises 
Determine the run time equation and complexity of each of the following code segments. 

1. for (i=0;i<n;i++) 

         for (j=0;j<n; j++) 

              sum=sum+i+j; 

 

2. for(int i=1; i<=n; i++) 

         for (int j=1; j<=i; j++) 

               sum++; 

What is the value of the sum if n=20? 

3. int  k=0; 

for (int i = 1; i <= N; i++) {

sum = sum+i;

}

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

sum = sum+i+j;

}

}

2

1 11

221 NN
N

i

N

j

N

i



















 

if (test == 1) {

for (int i = 1; i <= N; i++) {

sum = sum+i;

}}

else for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

sum = sum+i+j;

}}

  22

1 11

22,max

2,1max

NNN

N

i

N

j

N

i
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    for (int i=0; i<n; i++) 

       for (int j=i; j<n; j++) 

          k++; 

What is the value of k when n is equal to 20? 

4. int k=0; 

    for (int i=1; i<n; i*=2) 

        for(int j=1; j<n; j++) 

              k++; 

What is the value of k when n is equal to 20? 

 

5. int x=0; 

for(int i=1;i<n;i=i+5) 

      x++; 

What is the value of x when n=25? 

6. int x=0; 

for(int k=n;k>=n/3;k=k-5) 

     x++; 

What is the value of x when n=25? 

 

7. int x=0; 

for (int i=1; i<n;i=i+5) 

    for (int k=n;k>=n/3;k=k-5) 

        x++; 

What is the value of x when n=25? 

 

8. int x=0; 

for(int i=1;i<n;i=i+5) 

     for(int j=0;j<i;j++) 

          for(int k=n;k>=n/2;k=k-3) 

                 x++; 

 

What is the correct big-Oh Notation for the above code segment? 

1.3. Measures of Times 

In order to determine the running time of an algorithm it is possible to define three functions Tbest(n), 

Tavg(n) and Tworst(n) as the best, the average and the worst case running time of the algorithm respectively.  

 

Average Case (Tavg): The amount of time the algorithm takes on an "average" set of inputs.  

Worst Case (Tworst): The amount of time the algorithm takes on the worst possible set of inputs.  

Best Case (Tbest): The amount of time the algorithm takes on the smallest possible set of inputs. 

 

We are interested in the worst-case time, since it provides a bound for all input – this is called the “Big-

Oh” estimate. 
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1.4. Asymptotic Analysis 

Asymptotic analysis is concerned with how the running time of an algorithm increases with the size of the 

input in the limit, as the size of the input increases without bound. 

There are five notations used to describe a running time function. These are: 

 Big-Oh Notation (O) 

 Big-Omega Notation () 

 Theta Notation () 

 Little-o Notation (o) 

 Little-Omega Notation () 

1.4.1. The Big-Oh Notation 

Big-Oh notation is a way of comparing algorithms and is used for computing the complexity of 

algorithms; i.e., the amount of time that it takes for computer program to run . It’s only concerned with 

what happens for very a large value of n. Therefore only the largest term in the expression (function) is 

needed. For example, if the number of operations in an algorithm is n2 – n, n is insignificant compared to 

n2 for large values of n. Hence the n term is ignored. Of course, for small values of n, it may be important. 

However, Big-Oh is mainly concerned with large values of n.  

Formal Definition: f (n)= O (g (n)) if there exist c, k ∊ ℛ+ such that for all n≥ k, f (n) ≤ c.g (n). 

Examples: The following points are facts that you can use for Big-Oh problems: 

 1<=n for all n>=1 

 n<=n2 for all n>=1 

 2n <=n! for all n>=4 

 log2n<=n for all n>=2 

 n<=nlog2n for all n>=2 

1. f(n)=10n+5 and g(n)=n. Show that f(n) is O(g(n)). 

To show that f(n) is O(g(n)) we must show that constants c and k such that  

f(n) <=c.g(n) for all n>=k 

Or 10n+5<=c.n for all n>=k 

Try c=15. Then we need to show that 10n+5<=15n 

Solving for n we get: 5<5n or 1<=n. 

So f(n) =10n+5 <=15.g(n) for all n>=1. 
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(c=15,k=1). 

2. f(n) = 3n2 +4n+1. Show that f(n)=O(n2). 

4n <=4n2 for all n>=1 and 1<=n2 for all n>=1 

3n2 +4n+1<=3n2+4n2+n2 for all n>=1 

              <=8n2 for all n>=1 

So we have shown that f(n)<=8n2 for all n>=1 

Therefore, f (n) is O(n2)  (c=8,k=1) 

Typical Orders 

Here is a table of some typical cases. This uses logarithms to base 2, but these are simply proportional to 

logarithms in other base. 

  

N O(1) O(log n) O(n) O(n log n) O(n2) O(n3) 

1 1 1 1 1 1 1 

2 1 1 2 2 4 8 

4 1 2 4 8 16 64 

8 1 3 8 24 64 512 

16 1 4 16 64 256 4,096 

1024 1 10 1,024 10,240 1,048,576 1,073,741,824 

 

Demonstrating that a function f(n) is big-O of a function g(n) requires that we find specific constants c 

and k for which the inequality holds (and show that the inequality does in fact hold). 

Big-O expresses an upper bound on the growth rate of a function, for sufficiently large values of n. 

 

An upper bound is the best algorithmic solution that has been found for a problem. 

“ What is the best that we know we can do?” 

Exercise:  

f(n) = (3/2)n2+(5/2)n-3  

Show that f(n)= O(n2) 

In simple words, f (n) =O(g(n)) means that the growth rate of f(n) is less than or equal to g(n). 
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1.4.1.1. Big-O Theorems 

For all the following theorems, assume that f(n) is a function of n and that k is an arbitrary constant. 

 

Theorem 1: k is O(1) 

Theorem 2: A polynomial is O(the term containing the highest power of n). 

Polynomial’s growth rate is determined by the leading term 

 If  f(n)  is a polynomial of degree d, then  f(n)  is O(nd) 

In general, f(n) is big-O of the dominant term of f(n). 

 

Theorem 3: k*f(n) is O(f(n)) 

Constant factors may be ignored 

 E.g. f(n) =7n4+3n2+5n+1000 is O(n4) 

 

Theorem 4(Transitivity): If f(n) is O(g(n))and g(n) is O(h(n)), then f(n) is O(h(n)). 

  

Theorem 5: For any base b, logb(n) is O(logn). 

All logarithms grow at the same rate 

 logbn  is O(logdn) b, d > 1 

 

Theorem 6: Each of the following functions is big-O of its successors: 

 k 

 logbn 

n 

nlogbn 

n2 

n to higher powers 

2n 

3n 

larger constants to the nth power 

n! 

nn 

f(n)= 3nlogbn + 4 logbn+2 is O(nlogbn) and )(n2) and O(2n) 
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1.4.1.2. Properties of the O Notation 

Higher powers grow faster 

•nr  O( ns)  if   0 <= r <=  s 

Fastest growing term dominates a sum 

• If f(n)  is O(g(n)),  then  f(n) + g(n) is O(g) 

E.g   5n4  + 6n3   is   O (n4) 

n b > 1 and k >= 0 

           E.g. n20   is  O( 1.05n) 

Logarithms grow more slowly than powers 

•logb   

E.g. log2n   is O( n0.5) 

1.4.2. Big-Omega Notation 

Just as O-notation provides an asymptotic upper bound on a function,  notation provides an asymptotic 

lower bound. 

Formal Definition: A function f(n) is ( g (n)) if there exist constants c and k ∊ ℛ+   such that  

f(n) >=c. g(n) for all n>=k. 

 

f(n)= ( g (n)) means that f(n) is greater than or equal to some constant multiple of g(n) for all values of n 

greater than or equal to some k. 

Example: If f(n) =n2, then f(n)= ( n) 

In simple terms, f(n)= ( g (n)) means that the growth rate of f(n) is greater that or equal to g(n). 

1.4.3. Theta Notation 

A function f (n) belongs to the set of  (g(n)) if there exist positive constants c1 and c2 such that it can be 

sandwiched between c1.g(n) and c2.g(n), for sufficiently large values of n.  

Formal Definition: A function f (n) is  (g(n)) if it is both O( g(n) ) and  ( g(n) ). In other words, there 

exist constants c1, c2, and k >0 such that c1.g (n)<=f(n)<=c2. g(n) for all n >= k 

If f(n)=  (g(n)), then g(n) is an asymptotically tight bound for f(n). 
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In simple terms, f(n)=  (g(n)) means that f(n) and g(n) have the same rate of growth. 

Example: 

1. If f(n)=2n+1, then f(n) =  (n)  

2. f(n) =2n2 then 

    f(n)=O(n4) 

    f(n)=O(n3) 

   f(n)=O(n2)  

All these are technically correct, but the last expression is the best and tight one. Since 2n2 and n2 have the 

same growth rate, it can be written as f(n)= (n2). 

1.4.4. Little-o Notation 

Big-Oh notation may or may not be asymptotically tight, for example: 

2n2 = O(n2) 

      =O(n3) 

f(n)=o(g(n)) means for all c>0 there exists some k>0 such that f(n)<c.g(n) for all n>=k. Informally, 

f(n)=o(g(n)) means f(n) becomes insignificant relative to g(n) as n approaches infinity. 

Example: f(n)=3n+4 is o(n2) 

In simple terms, f(n) has less growth rate compared to g(n). 

g(n)= 2n2 g(n) =o(n3), O(n2), g(n) is not o(n2). 

1.4.5. Little-Omega ( notation) 

Little-omega () notation is to big-omega () notation as little-o notation is to Big-Oh notation. We use 

 notation to denote a lower bound that is not asymptotically tight. 

Formal Definition: f(n)=  (g(n)) if there exists a constant no>0 such that 0<= c. g(n)<f(n) for all n>=k. 

Example: 2n2=(n) but it’s not  (n2). 
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1.5. Relational Properties of the Asymptotic Notations 

Transitivity  

• if f(n)=(g(n)) and g(n)= (h(n)) then f(n)=(h(n)), 

• if f(n)=O(g(n)) and g(n)= O(h(n)) then f(n)=O(h(n)), 

• if f(n)=(g(n)) and g(n)= (h(n)) then f(n)= (h(n)), 

• if f(n)=o(g(n)) and g(n)= o(h(n)) then f(n)=o(h(n)), and 

• if f(n)= (g(n)) and g(n)= (h(n)) then f(n)= (h(n)). 

Symmetry 

• f(n)=(g(n)) if and only if g(n)=(f(n)). 

Transpose symmetry 

• f(n)=O(g(n)) if and only if g(n)=(f(n)), 

• f(n)=o(g(n)) if and only if g(n)=(f(n)). 

Reflexivity 

• f(n)=(f(n)), 

• f(n)=O(f(n)), 

• f(n)=(f(n)). 
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Chapter Two 

2. Simple Sorting and Searching Algorithms 

2.1. Searching 

Searching is a process of looking for a specific element in a list of items or determining that the item is 

not in the list. There are two simple searching algorithms: 

• Sequential Search, and 

• Binary Search 

2.1.1. Linear Search (Sequential Search) 

Pseudocode 

Loop through the array starting at the first element until the value of target matches one of the array 

elements. 

If a match is not found, return –1. 

Time is proportional to the size of input (n) and we call this time complexity O(n). 

Example Implementation: 

int Linear_Search(int list[], int key) 

{ 

int index=0; 

int found=0; 

do{ 

if(key==list[index]) 

     found=1; 

else 

    index++; 

}while(found==0&&index<n); 

if(found==0) 

     index=-1; 

return index; 

} 

2.1.2. Binary Search 

This searching algorithms works only on an ordered list.  

The basic idea is: 
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• Locate midpoint of array to search 

• Determine if target is in lower half or upper half of an array. 

o If in lower half, make this half the array to search 

o If in the upper half, make this half the array to search 

• Loop back to step 1 until the size of the array to search is one, and this element does not match, in 

which case return –1. 

The computational time for this algorithm is proportional to log2 n. Therefore the time complexity is 

O(log n) 

Example Implementation: 

int Binary_Search(int list[],int k) 

{ 

int left=0; 

int right=n-1; 

int found=0; 

do{ 

mid=(left+right)/2; 

if(key==list[mid]) 

     found=1; 

else{ 

      if(key<list[mid]) 

      right=mid-1; 

      else 

left=mid+1; 

       } 

}while(found==0&&left<right); 

if(found==0) 

   index=-1; 

else 

   index=mid; 

return index; 

} 

2.2. Sorting Algorithms 

Sorting is one of the most important operations performed by computers. Sorting is a process of 

reordering a list of items in either increasing or decreasing order. The following are simple sorting 

algorithms used to sort small-sized lists.  

• Insertion Sort 

• Selection Sort 

• Bubble Sort 
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2.2.1. Insertion Sort 

The insertion sort works just like its name suggests - it inserts each item into its proper place in the final 

list. The simplest implementation of this requires two list structures - the source list and the list into which 

sorted items are inserted. To save memory, most implementations use an in-place sort that works by 

moving the current item past the already sorted items and repeatedly swapping it with the preceding item 

until it is in place.  

It's the most instinctive type of sorting algorithm. The approach is the same approach that you use for 

sorting a set of cards in your hand. While playing cards, you pick up a card, start at the beginning of your 

hand and find the place to insert the new card, insert it and move all the others up one place. 

Basic Idea: 

Find the location for an element and move all others up, and insert the element. 

The process involved in insertion sort is as follows: 

1. The left most value can be said to be sorted relative to itself. Thus, we don’t need to do anything. 

2. Check to see if the second value is smaller than the first one. If it is, swap these two values. The 

first two values are now relatively sorted. 

3. Next, we need to insert the third value in to the relatively sorted portion so that after insertion, the 

portion will still be relatively sorted. 

4. Remove the third value first. Slide the second value to make room for insertion. Insert the value in 

the appropriate position. 

5. Now the first three are relatively sorted.  

6. Do the same for the remaining items in the list. 

Implementation 

void insertion_sort(int list[]){ 

int temp; 

for(int i=1;i<n;i++){ 

 temp=list[i]; 

         for(int j=i; j>0 && temp<list[j-1];j--) 

               { // work backwards through the array finding where temp should go 

                 list[j]=list[j-1]; 

                  list[j-1]=temp; 

         }//end of inner loop 

        }//end of outer loop 

}//end of insertion_sort 
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Analysis  

How many comparisons?  

   1+2+3+…+(n-1)= O(n2) 

How many swaps? 

    1+2+3+…+(n-1)= O(n2) 

How much space? 

 In-place algorithm 

2.2.2. Selection Sort 

Basic Idea: 

 Loop through the array from i=0 to n-1. 

 Select the smallest element in the array from i to n 

 Swap this value with value at position i. 

Implementation: 

void selection_sort(int list[]) 

{ 

int i,j, smallest; 

for(i=0;i<n;i++){ 

       smallest=i; 

    for(j=i+1;j<n;j++){ 

       if(list[j]<list[smallest]) 

             smallest=j; 

         }//end of inner loop 

          temp=list[smallest]; 

 list[smallest]=list[i]; 

 list[i]=temp; 

         } //end of outer loop 

}//end of selection_sort 
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Analysis 

How many comparisons? 

(n-1)+(n-2)+…+1= O(n2) 

How many swaps? 

n=O(n) 

How much space? 

 In-place algorithm 

2.2.3. Bubble Sort 

Bubble sort is the simplest algorithm to implement and the slowest algorithm on very large inputs. 

Basic Idea: 

 Loop through array from i=0 to n and swap adjacent elements if they are out of order. 

 

Implementation: 

void bubble_sort(list[]) 

{ 

 int i,j,temp; 

 for(i=0;i<n; i++){ 

      for(j=n-1;j>i; j--){ 

            if(list[j]<list[j-1]){ 

      temp=list[j]; 

  list[j]=list[j-1]; 

  list[j-1]=temp; 

}//swap adjacent elements 

    }//end of inner loop 

}//end of outer loop 

}//end of bubble_sort 

 

Analysis of Bubble Sort 

How many comparisons? 

(n-1)+(n-2)+…+1= O(n2) 

How many swaps? 

(n-1)+(n-2)+…+1= O(n2) 
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Space? 

 In-place algorithm. 

General Comments 

Each of these algorithms requires n-1 passes: each pass places one item in its correct place. The ith pass 

makes either i or n - i comparisons and moves. So:  

 

or O(n2). Thus these algorithms are only suitable for small problems where their simple code makes them 

faster than the more complex code of the O(n logn) algorithm. As a rule of thumb, expect to find an O(n 

logn) algorithm faster for n>10 - but the exact value depends very much on individual machines!. 

Empirically it’s known that Insertion sort is over twice as fast as the bubble sort and is just as easy to 

implement as the selection sort. In short, there really isn't any reason to use the selection sort - use the 

insertion sort instead.  

If you really want to use the selection sort for some reason, try to avoid sorting lists of more than a 1000 

items with it or repetitively sorting lists of more than a couple hundred items.  

 

 

 

 

 

 

 

 

 

 

 

http://linux.wku.edu/~lamonml/algor/sort/insertion.html
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Chapter Three 

3. Data Structures 

3.1. Structures 

Structures are aggregate data types built using elements of primitive data types. 

Structure are defined using the struct keyword: 

E.g.  struct Time{ 

   int hour; 

  int minute; 

  int second; 

         };  

The struct keyword creates a new user defined data type that is used to declare variables of an aggregate 

data type. 

Structure variables are declared like variables of other types. 

Syntax: struct <structure tag> <variable name>; 

E.g.  struct Time timeObject,   

        struct Time *timeptr; 

3.1.1. Accessing Members of Structure Variables 

The Dot operator (.): to access data members of structure variables. 

The Arrow operator (->): to access data members of pointer variables pointing to the structure.  

E.g. Print member hour of timeObject and timeptr. 

 cout<< timeObject.hour; or 

            cout<<timeptr->hour; 

TIP: timeptr->hour is the same as (*timeptr).hour. 

The parentheses is required since (*) has lower precedence than (.). 

3.1.2. Self-Referential Structures 

Structures can hold pointers to instances of themselves. 

struct list{ 
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 char name[10]; 

 int count; 

struct list *next; 

}; 

However, structures cannot contain instances of themselves. 

3.2. Singly Linked Lists 

Linked lists are the most basic self-referential structures. Linked lists allow you to have a chain of structs 

with related data.  

Array vs. Linked lists 

Arrays are simple and fast but we must specify their size at construction time. This has its own drawbacks. 

If you construct an array with space for n, tomorrow you may need n+1.Here comes a need for a more 

flexible system. 

 

Advantages of Linked Lists 

Flexible space use by dynamically allocating space for each element as needed. This implies that one need 

not know the size of the list in advance. Memory is efficiently utilized.  

A linked list is made up of a chain of nodes. Each node contains: 

• the data item, and  

• a pointer to the next node 

3.2.1. Creating Linked Lists in C++ 
 

A linked list is a data structure that is built from structures and pointers. It forms a chain of "nodes" with 

pointers representing the links of the chain and holding the entire thing together. A linked list can be 

represented by a diagram like this one:  

 
This linked list has four nodes in it, each with a link to the next node in the series. The last node has a link 

to the special value NULL, which any pointer (whatever its type) can point to, to show that it is the last 

link in the chain. There is also another special pointer, called Start (also called head), which points to the 

first link in the chain so that we can keep track of it.  
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3.2.2. Defining the data structure for a linked list 
 

The key part of a linked list is a structure, which holds the data for each node (the name, address, age or 

whatever for the items in the list), and, most importantly, a pointer to the next node. Here we have given 

the structure of a typical node:  

struct node 

  {  char name[20];    // Name of up to 20 letters 

     int age 

     float height;     // In metres 

     node *nxt;// Pointer to next node 

  }; 

struct node *start_ptr = NULL; 

 

The important part of the structure is the line before the closing curly brackets. This gives a pointer to the 

next node in the list. This is the only case in C++ where you are allowed to refer to a data type (in this 

case node) before you have even finished defining it!  

We have also declared a pointer called start_ptr that will permanently point to the start of the list. To start 

with, there are no nodes in the list, which is why start_ptr is set to NULL.  

 

3.2.3. Adding a node to the list 
 

The first problem that we face is how to add a node to the list. For simplicity's sake, we will assume that it 

has to be added to the end of the list, although it could be added anywhere in the list (a problem we will 

deal with later on).  

 

Firstly, we declare the space for a pointer item and assign a temporary pointer to it. This is done using the 

new statement as follows:  

 

temp = new node;  

 
 

We can refer to the new node as *temp, i.e. "the node that temp points to". When the fields of this 

structure are referred to, brackets can be put round the *temp part, as otherwise the compiler will think we 

are trying to refer to the fields of the pointer. Alternatively, we can use the arrow pointer notation.  

 

That's what we shall do here.  

 

Having declared the node, we ask the user to fill in the details of the person, i.e. the name, age, address or 

whatever:  

 

cout << "Please enter the name of the person: "; 

cin >> temp->name; 
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cout << "Please enter the age of the person : "; 

cin >> temp->age; 

cout << "Please enter the height of the person : "; 

cin >> temp->height; 

temp->nxt = NULL; 

 

The last line sets the pointer from this node to the next to NULL, indicating that this node, when it is 

inserted in the list, will be the last node. Having set up the information, we have to decide what to do with 

the pointers. Of course, if the list is empty to start with, there's no problem - just set the Start pointer to 

point to this node (i.e. set it to the same value as temp):  

if (start_ptr == NULL) 

    start_ptr = temp; 

 

It is harder if there are already nodes in the list. In this case, the secret is to declare a second pointer, 

temp2, to step through the list until it finds the last node.  

 
 

temp2 = start_ptr; 

   // We know this is not NULL - list not empty! 

while (temp2->nxt != NULL) 

  {  temp2 = temp2->nxt;   // Move to next link in chain 

  } 

The loop will terminate when temp2 points to the last node in the chain, and it knows when this 

happened because the nxt pointer in that node will point to NULL. When it has found it, it sets the pointer 

from that last node to point to the node we have just declared:  

temp2->nxt = temp; 

 
The link temp2->nxt in this diagram is the link joining the last two nodes. The full code for adding a 

node at the end of the list is shown below, in its own little function:  
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void add_node_at_end () 

  {  node *temp, *temp2;   // Temporary pointers 

 

     // Reserve space for new node and fill it with data 

     temp = new node; 

     cout << "Please enter the name of the person: "; 

     cin >> temp->name; 

     cout << "Please enter the age of the person : "; 

     cin >> temp->age; 

     cout << "Please enter the height of the person : "; 

     cin >> temp->height; 

     temp->nxt = NULL; 

 

     // Set up link to this node 

     if (start_ptr == NULL) 

         start_ptr = temp; 

     else 

       { temp2 = start_ptr; 

         // We know this is not NULL - list not empty! 

         while (temp2->nxt != NULL) 

           {  temp2 = temp2->nxt; 

              // Move to next link in chain 

           } 

         temp2->nxt = temp; 

       } 

  } 

3.2.4. Displaying the list of nodes 
 

Having added one or more nodes, we need to display the list of nodes on the screen. This is comparatively 

easy to do. Here is the method:  

1. Set a temporary pointer to point to the same thing as the start pointer.  

2. If the pointer points to NULL, display the message "End of list" and stop.  

3. Otherwise, display the details of the node pointed to by the start pointer.  

4. Make the temporary pointer point to the same thing as the nxt pointer of the node it is currently 

indicating.  

5. Jump back to step 2.  

The temporary pointer moves along the list, displaying the details of the nodes it comes across. At each 

stage, it can get hold of the next node in the list by using the nxt pointer of the node it is currently 

pointing to. Here is the C++ code that does the job:  
temp = start_ptr; 

do 

  {  if (temp == NULL) 

       cout << "End of list" << endl; 

     else 

       {  
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         // Display details for what temp points to 

          cout << "Name : " << temp->name << endl; 

          cout << "Age : " << temp->age << endl; 

          cout << "Height : " << temp->height << endl; 

          cout << endl;       // Blank line 

 

          // Move to next node (if present) 

          temp = temp->nxt; 

       } 

  } while (temp != NULL); 

Check through this code, matching it to the method listed above. It helps if you draw a diagram on paper 

of a linked list and work through the code using the diagram.  

 

3.2.5. Navigating through the list 
 

One thing you may need to do is to navigate through the list, with a pointer that moves backwards and 

forwards through the list, like an index pointer in an array. This is certainly necessary when you want to 

insert or delete a node from somewhere inside the list, as you will need to specify the position.  

 

We will call the mobile pointer current. First of all, it is declared, and set to the same value as the start_ptr 

pointer:  

node *current; 

current = start_ptr; 

Notice that you don't need to set current equal to the address of the start pointer, as they are both pointers. 

The statement above makes them both point to the same thing:  

 
 

It's easy to get the current pointer to point to the next node in the list (i.e. move from left to right along the 

list). If you want to move current along one node, use the nxt field of the node that it is pointing to at the 

moment:  

current = current->nxt; 

 

In fact, we had better check that it isn't pointing to the last item in the list. If it is, then there is no next 

node to move to:  

if (current->nxt == NULL) 

     cout << "You are at the end of the list." << endl; 

else 

     current = current->nxt; 

 

Moving the current pointer back one step is a little harder. This is because we have no way of moving 

back a step automatically from the current node. The only way to find the node before the current one is 

to start at the beginning, work our way through and stop when we find the node before the one we are 
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considering at the moment. We can tell when this happens, as the nxt pointer from that node will point to 

exactly the same place in memory as the current pointer (i.e. the current node).  

 

 

 

 

 

 

 

 

First of all, we had better check to see if the current node is also first the one. If it is, then there is no 

"previous" node to point to. If not, check through all the nodes in turn until we detect that we are just 

behind the current one (Like a pantomime - "behind you!")  

if (current == start_ptr) 

     cout << "You are at the start of the list" << endl; 

else 

   { node *previous;     // Declare the pointer 

     previous = start_ptr; 

 

     while (previous->nxt != current) 

        {     previous = previous->nxt; 

        } 

     current = previous; 

   } 

 

The else clause translates as follows: Declare a temporary pointer (for use in this else clause only). Set it 

equal to the start pointer. All the time that it is not pointing to the node before the current node, move it 

along the line. Once the previous node has been found, the current pointer is set to that node - i.e. it moves 

back along the list.  

 

Now that you have the facility to move back and forth, you need to do something with it. Firstly, let's see 

if we can alter the details for that particular node in the list:  

cout << "Please enter the new name of the person: "; 

cin >> current->name; 

cout << "Please enter the new age of the person : "; 

cin >> current->age; 

cout << "Please enter the new height of the person : "; 

cin >> current->height; 

 

The next easiest thing to do is to delete a node from the list directly after the current position. We have to 

use a temporary pointer to point to the node to be deleted. Once this node has been "anchored", the 

pointers to the remaining nodes can be readjusted before the node on death row is deleted. Here is the 

sequence of actions:  

1. Firstly, the temporary pointer is assigned to the node after the current one. This is the node to be 

deleted:  

    

previous current 
Start 

NULL 
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2. Now the pointer from the current node is made to leap-frog the next node and point to the one 

after that:  

 

 

 

3. The last step is to delete the node pointed to by temp.  

Here is the code for deleting the node. It includes a test at the start to test whether the current node is the 

last one in the list:  

if (current->nxt == NULL) 

     cout << "There is no node after current" << endl; 

else 

   { node *temp; 

     temp = current->nxt; 

     current->nxt = temp->nxt;     // Could be NULL 

     delete temp; 

   } 

Here is the code to add a node after the current one. This is done similarly, but we haven't illustrated it 

with diagrams:  

if (current->nxt == NULL) 

     add_node_at_end(); 

else 

   { node *temp; 

     new temp; 

     get_details(temp); 

     // Make the new node point to the same thing as 

     // the current node 

     temp->nxt = current->nxt; 

     // Make the current node point to the new link 

     // in the chain 

     current->nxt = temp; 

   } 

 

NULL 

NULL 

    

current temp 

 

     

current temp 
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We have assumed that the function add_node_at_end() is the routine for adding the node to the end of the 

list that we created near the top of this section. This routine is called if the current pointer is the last one in 

the list so the new one would be added on to the end.  

 

Similarly, the routine get_temp(temp) is a routine that reads in the details for the new node similar to the 

one defined just above.  

... and so ... 

3.2.6. Deleting a node from the list 
When it comes to deleting nodes, we have three choices: Delete a node from the start of the list, delete 

one from the end of the list, or delete one from somewhere in the middle. For simplicity, we shall just deal 

with deleting one from the start or from the end. 

 

When a node is deleted, the space that it took up should be reclaimed. Otherwise the computer will 

eventually run out of memory space. This is done with the delete instruction:  

 

delete temp;     // Release the memory pointed to by temp 

 

However, we can't just delete the nodes willy-nilly as it would break the chain. We need to reassign the 

pointers and then delete the node at the last moment. Here is how we go about deleting the first node in 

the linked list:  
 

temp = start_ptr; // Make the temporary pointer 

                  // identical to the start pointer 

 
Now that the first node has been safely tagged (so that we can refer to it even when the start pointer has 

been reassigned), we can move the start pointer to the next node in the chain:  

start_ptr = start_ptr->nxt;   // Second node in chain. 
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delete temp;    // Wipe out original start node 

 
Here is the function that deletes a node from the start:  

 

void delete_start_node() 

   { node *temp; 

     temp = start_ptr; 

     start_ptr = start_ptr->nxt; 

     delete temp; 

   } 

 

Deleting a node from the end of the list is harder, as the temporary pointer must find where the end of the 

list is by hopping along from the start. This is done using code that is almost identical to that used to 

insert a node at the end of the list. It is necessary to maintain two temporary pointers, temp1 and temp2. 

The pointer temp1 will point to the last node in the list and temp2 will point to the previous node. We have 

to keep track of both as it is necessary to delete the last node and immediately afterwards, to set the nxt 

pointer of the previous node to NULL (it is now the new last node).  

1. Look at the start pointer. If it is NULL, then the list is empty, so print out a "No nodes to delete" 

message.  

2. Make temp1 point to whatever the start pointer is pointing to.  

3. If the nxt pointer of what temp1 indicates is NULL, then we've found the last node of the list, so 

jump to step 7.  

4. Make another pointer, temp2, point to the current node in the list.  

5. Make temp1 point to the next item in the list.  

6. Go to step 3.  

7. If you get this far, then the temporary pointer, temp1, should point to the last item in the list and 

the other temporary pointer, temp2, should point to the last-but-one item.  

8. Delete the node pointed to by temp1.  

9. Mark the nxt pointer of the node pointed to by temp2 as NULL - it is the new last node.  

Let's try it with a rough drawing. This is always a good idea when you are trying to understand an abstract 

data type. Suppose we want to delete the last node from this list:  



Compiled By Habtewold Desta Page 32 
  

 
 

Firstly, the start pointer doesn't point to NULL, so we don't have to display a "Empty list, wise guy!" 

message. Let's get straight on with step2 - set the pointer temp1 to the same as the start pointer:  

 
 

The nxt pointer from this node isn't NULL, so we haven't found the end node. Instead, we set the pointer 

temp2 to the same node as temp1  

 
and then move temp1 to the next node in the list:  

 

Going back to step 3, we see that temp1 still doesn't point to the last node in the list, so we make temp2 

point to what temp1 points to  
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and temp1 is made to point to the next node along:  

 

Eventually, this goes on until temp1 really is pointing to the last node in the list, with temp2 pointing to the 

penultimate node:  

 

 

 

 

 

Now we have reached step 8. The next thing to do is to delete the node pointed to by temp1  

 

and set the nxt pointer of what temp2 indicates to NULL:  

    
NULL 

temp 2 temp1 

start_ptr 

    
NULL 

temp 2 temp1 

start_ptr 
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We suppose you want some code for all that! All right then ....  

void delete_end_node() 

   { node *temp1, *temp2; 

     if (start_ptr == NULL) 

          cout << "The list is empty!" << endl; 

     else 

        { temp1 = start_ptr; 

          while (temp1->nxt != NULL) 

             { temp2 = temp1; 

               temp1 = temp1->nxt; 

             } 

          delete temp1; 

          temp2->nxt = NULL; 

        } 

   } 

The code seems a lot shorter than the explanation!  

 

Now, the sharp-witted amongst you will have spotted a problem. If the list only contains one node, the 

code above will malfunction. This is because the function goes as far as the temp1 = start_ptr statement, but 

never gets as far as setting up temp2. The code above has to be adapted so that if the first node is also the 

last (has a NULL nxt pointer), then it is deleted and the start_ptr pointer is assigned to NULL. In this case, 

there is no need for the pointer temp2:  

 

void delete_end_node() 

   { node *temp1, *temp2; 

     if (start_ptr == NULL) 

          cout << "The list is empty!" << endl; 

     else 

        { temp1 = start_ptr; 

          if (temp1->nxt == NULL)     // This part is new! 

             { delete temp1; 

               start_ptr = NULL; 

             } 

          else 

        { while (temp1->nxt != NULL) 

                  { temp2 = temp1; 
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                    temp1 = temp1->nxt; 

                  } 

               delete temp1; 

               temp2->nxt = NULL; 

             } 

        } 

   } 

3.3. Doubly Linked Lists 

That sounds even harder than a linked list! Well, if you've mastered how to do singly linked lists, then it 

shouldn't be much of a leap to doubly linked lists  

A doubly linked list is one where there are links from each node in both directions:  

 
 

You will notice that each node in the list has two pointers, one to the next node and one to the previous 

one - again, the ends of the list are defined by NULL pointers. Also there is no pointer to the start of the 

list. Instead, there is simply a pointer to some position in the list that can be moved left or right.  

 

The reason we needed a start pointer in the ordinary linked list is because, having moved on from one 

node to another, we can't easily move back, so without the start pointer, we would lose track of all the 

nodes in the list that we have already passed. With the doubly linked list, we can move the current pointer 

backwards and forwards at will.  

3.3.1. Creating Doubly Linked Lists 

The nodes for a doubly linked list would be defined as follows:  

struct node{ 

   char name[20]; 

   node *nxt;    // Pointer to next node 

   node *prv;    // Pointer to previous node 

 }; 

node *current; 

current = new node; 

current->name = "Fred"; 

current->nxt = NULL; 

current->prv = NULL; 
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We have also included some code to declare the first node and set its pointers to NULL. It gives the 

following situation:  

 
We still need to consider the directions 'forward' and 'backward', so in this case, we will need to define 

functions to add a node to the start of the list (left-most position) and the end of the list (right-most 

position). 

3.3.2. Adding a Node to a Doubly Linked List 

void add_node_at_start (string new_name) 

 { // Declare a temporary pointer and move it to the start 

   node *temp = current; 

   while (temp->prv != NULL) 

    temp = temp->prv; 

   // Declare a new node and link it in 

   node *temp2; 

   temp2 = new node; 

   temp2->name = new_name;  // Store the new name in the node 

   temp2->prv = NULL;       // This is the new start of the list 

   temp2->nxt = temp;       // Links to current list 

   temp->prv = temp2; 

 } 

 

void add_node_at_end () 

 { // Declare a temporary pointer and move it to the end 

   node *temp = current; 

   while (temp->nxt != NULL) 

    temp = temp->nxt; 

   // Declare a new node and link it in 

   node *temp2; 

   temp2 = new node; 

   temp2->name = new_name;  // Store the new name in the node 

   temp2->nxt = NULL;       // This is the new start of the list 

   temp2->prv = temp;       // Links to current list 

   temp->nxt = temp2; 

 } 

Here, the new name is passed to the appropriate function as a parameter. We'll go through the function for 

adding a node to the right-most end of the list. The method is similar for adding a node at the other end. 

Firstly, a temporary pointer is set up and is made to march along the list until it points to last node in the 

list.  
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Start_Ptr 

 
 

 

After that, a new node is declared, and the name is copied into it. The nxt pointer of this new node is set 

to NULL to indicate that this node will be the new end of the list.  

The prv pointer of the new node is linked into the last node of the existing list.  

The nxt pointer of the current end of the list is set to the new node.  
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Chapter Four 

4. Stacks 
A simple data structure, in which insertion and deletion occur at the same end, is termed (called) a stack. It is a 

LIFO (Last In First Out) structure. 

 

The operations of insertion and deletion are called PUSH and POP 

Push - push (put) item onto stack 

Pop - pop (get) item from stack 

Initial Stack  Push(8)  Pop  

   

   

TOS=>  

   

   

   
 

       

   

4  

1  

3  

6  
 

   

TOS=>   

   

   

   

   
 

       

8  

4  

1  

3  

6  
 

   

   

TOS=>  

   

   

   
 

       

   

4  

1  

3  

6  
 

Our Purpose: 

To develop a stack implementation that does not tie us to a particular data type or to a particular 

implementation.  

Implementation: 

Stacks can be implemented both as an array (contiguous list) and as a linked list. We want a set of operations 

that will work with either type of implementation: i.e. the method of implementation is hidden and can be 

changed without affecting the programs that use them. 

 

 

The Basic Operations: 

Push()  
{  

if there is room {  

put an item on the top of the stack  

else  

give an error message  

}  

}  

Pop()  
{  

           if stack not empty {  

                   return the value of the top item  

                   remove the top item from the stack  

                                          } 

           else {  

                   give an error message  
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                   }  

}  

   

CreateStack()  
{  

remove existing items from the stack  

initialise the stack to empty  

}  

3.4 Array 

3.4.1. Array Implementation of Stacks: The PUSH operation 

Here, as you might have noticed, addition of an element is known as the PUSH operation. So, if an array 

is given to you, which is supposed to act as a STACK, you know that it has to be a STATIC Stack; 

meaning, data will overflow if you cross the upper limit of the array. So, keep this in mind.  

Algorithm: 

Step-1: Increment the Stack TOP by 1. Check whether it is always less than the Upper Limit of the stack. 

If it is less than the Upper Limit go to step-2 else report -"Stack Overflow" 

Step-2: Put the new element at the position pointed by the TOP 

Implementation: 

static int stack[UPPERLIMIT]; 

int top= -1; /*stack is empty*/ 

.. 

.. 

main() 

{ 

.. 

.. 

push(item); 

.. 

.. 

} 

push(int item) 

{ 

      top = top + 1; 

      if(top < UPPERLIMIT)  

stack[top] = item; /*step-1 & 2*/ 

        else 

          cout<<"Stack Overflow";  

} 



Compiled By Habtewold Desta Page 40 
  

Note:- In array implementation,we have taken TOP = -1 to signify the empty stack, as this simplifies the 

implementation. 

3.4.2. Array Implementation of Stacks: the POP operation 

POP is the synonym for delete when it comes to Stack. So, if you're taking an array as the stack, 

remember that you'll return an error message, "Stack underflow", if an attempt is made to Pop an item 

from an empty Stack. OK.  

Algorithm 

Step-1: If the Stack is empty then give the alert "Stack underflow" and quit; or else go to step-2 

Step-2: a) Hold the value for the element pointed by the TOP 

            b) Put a NULL value instead 

            c) Decrement the TOP by 1 

Implementation: 

static int stack[UPPPERLIMIT]; 

int top=-1; 

.. 

.. 

main() 

{ 

.. 

.. 

poped_val = pop(); 

.. 

.. 

} 

int pop() 

{ 

int del_val = 0; 

if(top == -1)  

cout<<"Stack underflow"; /*step-1*/ 

  else 

     { 

      del_val = stack[top];  /*step-2*/ 

      stack[top] = NULL; 

      top = top -1; 

     }  

return(del_val); 

} 

Note: - Step-2:(b) signifies that the respective element has been deleted.  
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3.4.3. Linked List Implementation of Stacks: the PUSH operation 

It’s very similar to the insertion operation in a dynamic singly linked list. The only difference is that here 

you'll add the new element only at the end of the list, which means addition can happen only from the 

TOP. Since a dynamic list is used for the stack, the Stack is also dynamic, means it has no prior upper 

limit set. So, we don't have to check for the Overflow condition at all!  

 
In Step [1] we create the new element to be pushed to the Stack. 

In Step [2] the TOP most element is made to point to our newly created element. 

In Step [3] the TOP is moved and made to point to the last element in the stack, which is our newly added 

element. 

Algorithm 

Step-1: If the Stack is empty go to step-2 or else go to step-3 

Step-2: Create the new element and make your "stack" and "top" pointers point to it and quit. 

Step-3: Create the new element and make the last (top most) element of the stack to point to it 

Step-4: Make that new element your TOP most element by making the "top" pointer point to it. 

Implementation: 
struct node{ 

     int item; 

     struct node *next; 

    } 

struct node *stack = NULL; /*stack is initially 

empty*/ 

struct node *top = stack; 

main() 

{ 

.. 

.. 

push(item); 

.. 

} 

 

push(int item) 

{ 

     if(stack == NULL)  /*step-1*/ 

       { 

        newnode = new node  /*step-2*/ 

        newnode -> item = item; 

        newnode -> next = NULL; 

        stack = newnode; 

        top = stack; 

       } 

     else 

       { 

        newnode = new node; /*step-3*/ 

        newnode -> item = item; 

        newnode -> next = NULL; 

        top ->next = newnode; 

        top = newnode;   /*step-4*/ 

       } 
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3.4.4. Linked List Implementation of Stacks: the POP Operation  

This is again very similar to the deletion operation in any Linked List, but you can only delete from the 

end of the list and only one at a time; and that makes it a stack. Here, we'll have a list pointer, "target", 

which will be pointing to the last but one element in the List (stack). Every time we POP, the TOP most 

element will be deleted and "target" will be made as the TOP most element.  

 

 

 

In step[1] we got the "target" pointing to the last but one node. 

In step[2] we freed the TOP most element. 

In step[3] we made the "target" node as our TOP most element.  

Supposing you have only one element left in the Stack, then we won't 

make use of "target" rather we'll take help of our "bottom" pointer. See 

how... 

Algorithm: 

 

Step-1: If the Stack is empty then give an alert message "Stack Underflow" and quit; or else proceed 

Step-2: If there is only one element left go to step-3 or else step-4 

Step-3: Free that element and make the "stack", "top" and "bottom" pointers point to NULL and quit 

Step-4: Make "target" point to just one element before the TOP; free the TOP most element; make 

"target" as your TOP most element 

Implementation:- 

 

struct node 

{ 

 int nodeval; 

 struct node *next; 

} 

struct node *stack = NULL; /*stack is initially empty*/ 

struct node *top = stack; 

 

main() 

{ 

int newvalue, delval; 

.. 

push(newvalue); 

.. 

delval = pop();   /*POP returns the deleted value from the stack*/ 

} 
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int pop( ) 

{ 

int pop_val = 0; 

struct node *target = stack; 

     if(stack == NULL)  /*step-1*/ 

      cout<<"Stack Underflow"; 

     else 

       { 

        if(top == bottom)  /*step-2*/ 

          { 

            pop_val = top -> nodeval;   /*step-3*/ 

          delete top; 

           stack = NULL; 

           top = bottom = stack; 

          } 

         else   /*step-4*/ 

          {  

           while(target->next != top) target = target ->next; 

           pop_val = top->nodeval; 

           delete top; 

           top = target; 

           target ->next = NULL;  

          }  

       } 

return(pop_val); 

} 

 

3.4.5. Applications of Stacks 

3.4.5.1. Evaluation of Algebraic Expressions 

e.g. 4 + 5 * 5 

simple calculator: 45 

scientific calculator: 29 (correct) 

Question:  

Can we develop a method of evaluating arithmetic expressions without having to ‘look ahead’ or 

‘look back’? ie consider the quadratic formula:  

x = (-b+(b^2-4*a*c)^0.5)/(2*a)  

where ^ is the power operator, or, as you may remember it : 
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In it’s current form we cannot solve the formula without considering the ordering of the parentheses. i.e. 

we solve the innermost parenthesis first and then work outwards also considering operator precedence. 

Although we do this naturally, consider developing an algorithm to do the same . . . . . . possible but 

complex and inefficient. Instead . . . .  

 

Re-expressing the Expression 

Computers solve arithmetic expressions by restructuring them so the order of each calculation is 

embedded in the expression. Once converted an expression can then be solved in one pass. 

Types of Expression 

The normal (or human) way of expressing mathematical expressions is called infix form, e.g. 4+5*5. 

However, there are other ways of representing the same expression, either by writing all operators before 

their operands or after them,  

e.g.: 4 5 5 * + 

+ 4 * 5 5 

This method is called Polish Notation (because this method was discovered by the Polish mathematician 

Jan Lukasiewicz). 

 

When the operators are written before their operands, it is called the prefix form 

e.g. + 4 * 5 5 

When the operators come after their operands, it is called postfix form (suffix form or reverse polish 

notation) 

e.g. 4 5 5 * + 

The valuable aspect of RPN (Reverse Polish Notation or postfix ) 

 Parentheses are unnecessary 

   

 Easy for a computer (compiler) to evaluate an arithmetic expression 

Postfix (Reverse Polish Notation)  

Postfix notation arises from the concept of post-order traversal of an expression tree (see Weiss p. 93 - 

this concept will be covered when we look at trees). 
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For now, consider postfix notation as a way of redistributing operators in an expression so that their 

operation is delayed until the correct time. 

 

Consider again the quadratic formula: 

x = (-b+(b^2-4*a*c)^0.5)/(2*a) 

In postfix form the formula becomes: 

x b @ b 2 ^ 4 a * c * - 0.5 ^ + 2 a * / = 

where @ represents the unary - operator. 

Notice the order of the operands remain the same but the operands are redistributed in a non-obvious way 

(an algorithm to convert infix to postfix can be derived).  

 

Purpose 

 

The reason for using postfix notation is that a fairly simple algorithm exists to evaluate such expressions 

based on using a stack. 

 

Postfix Evaluation 

 

Consider the postfix expression : 

6 5 2 3 + 8 * + 3 + * 

Algorithm 

initialise stack to empty; 

while (not end of postfix expression) { 

   get next postfix item; 

   if(item is value) 

      push it onto the stack; 

   else if(item is binary operator) { 

      pop the stack to x; 

      pop the stack to y; 

      perform y operator x; 

      push the results onto the stack; 

   } else if (item is unary operator) { 

      pop the stack to x; 

      perform operator(x); 

      push the results onto the stack 

   } 

} 

The single value on the stack is the desired result. 

Binary operators: +, -, *, /, etc., 
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Unary operators: unary minus, square root, sin, cos, exp, etc.,  

So for 6 5 2 3 + 8 * + 3 + * 

the first item is a value (6) so it is pushed onto the stack 

the next item is a value (5) so it is pushed onto the stack 

the next item is a value (2) so it is pushed onto the stack 

the next item is a value (3) so it is pushed onto the stack and the stack becomes 

 

       

TOS=>  

       

       

       
 

       

3  

2  

5  

6  
 

the remaining items are now: + 8 * + 3 + * 

So next a '+' is read (a binary operator), so 3 and 2 are popped from the stack and their sum '5' is 

pushed onto the stack: 

       

       

TOS=>  

       

       
 

       

       

5  

5  

6  
 

Next 8 is pushed and the next item is the operator *: 

       

TOS=>  

       

       

       
 

       

8  

5  

5  

6  
 

             

       

       

TOS=>  

       

       
 

       

   

40  

5  

6  
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(8, 5 popped, 40 pushed)  

Next the operator + followed by 3: 

       

       

       

TOS=>  

       
 

       

   

   

45  

6  
 

             

       

       

TOS=>  

       

       
 

       

   

3  

45  

6  
 

             

(40, 5 popped, 45 pushed, 3 pushed)  

Next is operator +, so 3 and 45 are popped and 45+3=48 is pushed 

       

       

       

TOS=>  

       
 

       

       

       

48  

6  
 

Next is operator *, so 48 and 6 are popped, and 6*48=288 is pushed 

       

       

       

       

TOS=>  
 

       

       

       

       

288  
 

  

Now there are no more items and there is a single value on the stack, representing the final answer 288. 

Note the answer was found with a single traversal of the postfix expression, with the stack being used as a 

kind of memory storing values that are waiting for their operands. 

 

3.4.5.2. Infix to Postfix (RPN) Conversion 

Of course postfix notation is of little use unless there is an easy method to convert standard 

(infix) expressions to postfix. Again a simple algorithm exists that uses a stack:  



Compiled By Habtewold Desta Page 48 
  

 

Algorithm 

initialise stack and postfix output to empty; 

while(not end of infix expression) { 

   get next infix item 

   if(item is value) append item to pfix o/p 

   else if(item == ‘(‘) push item onto stack 

   else if(item == ‘)’) { 

      pop stack to x 

      while(x != ‘(‘) 

         app.x to pfix o/p & pop stack to x 

   } else { 

      while(precedence(stack top) >= precedence(item)) 

         pop stack to x & app.x to pfix o/p 

      push item onto stack 

   } 

} 

while(stack not empty) 

   pop stack to x and append x to pfix o/p 

 

Operator Precedence (for this algorithm): 

4 : ‘(‘ - only popped if a matching ‘)’ is found 

3 : All unary operators 

2 : / * 

1 : + - 

The algorithm immediately passes values (operands) to the postfix expression, but remembers 

(saves) operators on the stack until their right-hand operands are fully translated.   
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eg., consider the infix expression a+b*c+(d*e+f)*g 

Stack  Output  

   

TOS=>  
 

       

+  
 

ab  

   

TOS=>  

   
 

       

*  

+  
 

abc  

   

TOS=>  
 

       

+  
 

abc*+  

   

TOS=>  

   

   
 

       

 *  

(  

+  
 

abc*+de  

   

TOS=>  

   

   
 

       

 +  

(  

+  
 

abc*+de*f  

   

 

TOS=>  
 

       

+  
 

abc*+de*f+  

   

TOS=>  

   
 

       

*  

+  
 

abc*+de*f+g  

empty  
 

       
 

abc*+de*f+g*+  
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3.4.5.3. Function Calls 
 

When a function is called, arguments (including the return address) have to be passed to the called 

function.  

If these arguments are stored in a fixed memory area then the function cannot be called recursively since 

the 1st return address would be overwritten by the 2nd return address before the first was used: 
call function abc();  

continue; 

   ... 

 function abc; 

 code; 

 if (expression) 

    call function abc();  

 code 

 return  

A stack allows a new instance of returns for each call to the function. Recursive calls on the function are 

limited only by the extent of the stack. 
 call function abc(); continue; 

   ... 

 function abc; 

 code; 

 if (expression) 

    call function abc();  

 code 

 return  

3.5. Queue 

Queue is a data structure that has access to its data at the front and rear. It operates on FIFO (Fast In First 

Out) basis. It uses two pointers/indices to keep stack of information/data. 

 Has two basic operations: 

o enqueue - inserting data at the rear of the queue 

o dequeue – removing data at the front of the queue     

 

 

 

 

 

 

 

 

Example:- 

    

Operation Content of queue 

Enqueue(B) B 

Enqueue(C) B, C 

Dequeue() C 

Enqueue(G) C, G 

Enqueue (F) C, G, F 

Front Rear 

dequeue enqueue 
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Dequeue() G, F 

Enqueue(A) G, F, A 

Dequeue() F, A 

 

3.5.1. Simple array implementation of enqueue and dequeue operations 

Analysis: 

 Consider the following structure:  int Num[MAX_SIZE]; 

 We need to have two integer variables that tell: 

- the index of the front element 

- the index of the rear element 

 We also need an integer variable that tells: 

  - the total number of data in the queue 

int FRONT =-1,REAR =-1;  

int QUEUESIZE=0; 

 To enqueue data to the queue 

o check if there is space in the queue 

REAR<MAX_SIZE-1 ? 

Yes:  - Increment REAR 

 - Store the data in Num[REAR] 

 - Increment QUEUESIZE 

    FRONT = = -1? 

          Yes: - Increment FRONT 

No:  - Queue Overflow 

  To dequeue data from the queue 

o check if there is data in the queue 

QUEUESIZE > 0 ? 

Yes:  - Copy the data in Num[FRONT] 

 - Increment FRONT 

 - Decrement QUEUESIZE 

No:  - Queue Underflow 

 

Implementation: 

const int MAX_SIZE=100; 

int FRONT =-1, REAR =-1; 

int QUEUESIZE = 0; 
 void enqueue(int x) 

 { 

  if(Rear<MAX_SIZE-1)    

  { 

   REAR++; 

   Num[REAR]=x; 

   QUEUESIZE++; 

   if(FRONT = = -1) 

    FRONT++; 

  } 

  else 

   cout<<"Queue Overflow"; 

 } 

 int dequeue() 

 { 

  int x; 

  if(QUEUESIZE>0)    

  { 

   x=Num[FRONT]; 

   FRONT++; 

   QUEUESIZE--; 

 

  } 

  else 

   cout<<"Queue Underflow"; 

  return(x);    

              } 
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3.5.2. Circular array implementation of enqueue and dequeue operations 

A problem with simple arrays is we run out of space even if the queue never reaches the size of the array. 

Thus, simulated circular arrays (in which freed spaces are re-used to store data) can be used to solve this 

problem. 

  

Example:  Consider a queue with MAX_SIZE = 4 

    

Operation 

 

 

Simple array Circular array 

Content of 

the array 

Content of 

the Queue 

QUEUE 

SIZE 

Message Content of 

the array 

Content of 

the queue 

QUEUE

SIZE 

Message 

Enqueue(B) B    B 1  B    B 1  

Enqueue(C) B C   BC 2  B C   BC 2  

Dequeue()  C   C 1   C   C 1  

Enqueue(G)  C G  CG 2   C G  CG 2  

Enqueue (F)  C G F CGF 3   C G F CGF 3  

Dequeue()   G F GF 2    G F GF 2  

Enqueue(A)   G F GF 2 Overflow A  G F GFA 3  

Enqueue(D)   G F GF 2 Overflow A D G F GFAD 4  

Enqueue(C)   G F GF 2 Overflow A D G F GFAD 4 Overflow 

Dequeue()    F F 1  A D  F FAD 3  

Enqueue(H)    F F 1 Overflow A D H F FADH 4  

Dequeue ()     Empty 0  A D H  ADH 3  

Dequeue()     Empty 0 Underflow  D H  DH 2  

Dequeue()     Empty 0 Underflow   H  H 1  

Dequeue()     Empty 0 Underflow     Empty 0  

Dequeue()     Empty 0 Underflow     Empty 0 Underflow 

 

The circular array implementation of a queue with MAX_SIZE can be simulated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis: 

 Consider the following structure:  int Num[MAX_SIZE]; 

 We need to have two integer variables that tell: 

- the index of the front element 

- the index of the rear element 

 We also need an integer variable that tells: 

  - the total number of data in the queue 

int FRONT =-1,REAR =-1;  

0 

1 

2 
3 4 

5 

6 

7 

8 

9 

10 

11 12 
13 

MAX_SIZE - 1 
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int QUEUESIZE=0; 

 

 To enqueue data to the queue 

o check if there is space in the queue 

QUEUESIZE<MAX_SIZE ? 

Yes:  - Increment REAR 

  REAR = = MAX_SIZE ? 

   Yes:    REAR = 0  

 - Store the data in Num[REAR] 

 - Increment QUEUESIZE 

    FRONT = = -1? 

       Yes: - Increment FRONT 

No:  - Queue Overflow 

 

  To dequeue data from the queue 

o check if there is data in the queue 

QUEUESIZE > 0 ? 

Yes:  - Copy the data in Num[FRONT] 

 - Increment FRONT 

  FRONT = = MAX_SIZE ? 

   Yes: FRONT = 0 

 - Decrement QUEUESIZE 

No:  - Queue Underflow 

 

Implementation: 

const int MAX_SIZE=100; 

int FRONT =-1, REAR =-1; 

int QUEUESIZE = 0; 

  
 void enqueue(int x) 

 { 

  if(QUEUESIZE<MAX_SIZE)    

  { 

   REAR++; 

   if(REAR = = MAX_SIZE) 

    REAR=0; 

   Num[REAR]=x; 

   QUEUESIZE++; 

   if(FRONT = = -1) 

    FRONT++; 

  } 

  else 

   cout<<"Queue Overflow"; 

 } 

 int dequeue() 

 { 

  int x; 

  if(QUEUESIZE>0)    

  { 

   x=Num[FRONT]; 

   FRONT++; 

   if(FRONT = = MAX_SIZE) 

    FRONT = 0; 

   QUEUESIZE--; 

 

  } 

  else 

   cout<<"Queue Underflow"; 

  return(x); 

 }
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3.5.3. Linked list implementation of enqueue and dequeue operations 

Enqueue- is inserting a node at the end of a linked list 

Dequeue- is deleting the first node in the list 

3.5.4. Deque (pronounced as Deck) 

- is a Double Ended Queue 

- insertion and deletion can occur at either end 

- has the following basic operations 

 EnqueueFront – inserts data at the front of the list  

 DequeueFront – deletes data at the front of the list 

  EnqueueRear – inserts data at the end of the list 

  DequeueRear – deletes data at the end of the list 

- implementation is similar to that of queue 

- is best implemented using doubly linked list 

 

 

 

 

 

 

 

 

 

3.5.5. Priority Queue 

- is a queue where each data has an associated key that is provided at the time of insertion. 

- Dequeue operation deletes data having highest priority in the list 

- One of the previously used dequeue or enqueue operations has to be modified 

 

Example:  Consider the following queue of persons where females have higher priority than males 

(gender is the key to give priority). 

 

 

 

 

Dequeue()- deletes Aster 

 

 

 

Dequeue()- deletes Meron 

 

 

  

DequeueFront EnqueueRear DequeueRear EnqueueFront 

Front Rear 

Abebe Alemu Belay Kedir Meron Yonas 
Male Male Male Male Female Male 

Abebe Alemu Aster Belay Kedir Meron Yonas 
Male Male Female Male Male Female Male 

Abebe Alemu Belay Kedir Yonas  
Male Male Male Male Male 
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Now the queue has data having equal priority and dequeue operation deletes the front element like 

in the case of ordinary queues. 

 

Dequeue()- deletes Abebe 

 

 

 

Dequeue()- deletes Alemu 

 

 

 

 

Thus, in the above example the implementation of the dequeue operation need to be modified. 

 

3.5.5.1. Demerging Queues 
-  is the process of creating two or more queues from a single queue. 

- used to give priority for some groups of data 

 

Example: The following two queues can be created from the above priority queue. 

 

 

 

Algorithm: 

 create empty females and males queue 

 while (PriorityQueue is not empty) 

 { 

 Data=DequeuePriorityQueue(); // delete data at the front  

  if(gender of Data is Female) 

  

 EnqueueFemale(Data); 

  else 

  

 EnqueueMale(Data); 

}  

 

3.5.5.2. Merging Queues 
- is the process of creating a priority queue from two or more queues. 

- the ordinary dequeue implementation can be used to delete data in the newly created priority 

queue.  

 

Example:  The following two queues (females queue has higher priority than the males queue) can 

be merged to create a priority queue. 

 

 

 

 

 

Alemu Belay Kedir Yonas 

 Male Male Male Male 

Belay Kedir Yonas 
Male Male Male 

Aster 
Female 

Meron 
Female 

Abebe Alemu 
Male Male 

Belay Kedir 
Male Male 

Yonas 
Male 

Aster 
Female 

Meron 
Female 

Abebe Alemu 
Male Male 

Belay Kedir 
Male Male 

Yonas 
Male 

Aster 
Female 

Meron 
Female 

Abebe Alemu 
Male Male 

Belay Kedir 
Male Male 

Yonas 
Male 
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Algorithm: 

 

 create an empty priority queue 

 while(FemalesQueue is not empty) 

  EnqueuePriorityQueue(DequeueFemalesQueue()); 

 while(MalesQueue is not empty) 

  EnqueuePriorityQueue(DequeueMalesQueue()); 

 

It is also possible to merge two or more priority queues. 

Example:  Consider the following priority queues and suppose large numbers represent high 

priorities. 

 

 

 

 

 

 

 Thus, the two queues can be merged to give the following priority queue. 

 

 

 

3.5.6. Application of Queues 

i. Print server- maintains a queue of print jobs 

Print() 

{ 

 EnqueuePrintQueue(Document) 

} 

EndOfPrint() 

{ 

 DequeuePrintQueue() 

} 

 

ii. Disk Driver- maintains a queue of disk input/output requests 

 

iii. Task scheduler in multiprocessing system- maintains priority queues of processes 

 

iv. Telephone calls in a busy environment –maintains a queue of telephone calls 

 

v. Simulation of waiting line- maintains a queue of persons 

 

 

 

 

  

ABC CDE 
52 41 

DEF FGH 
35 16 

HIJ 
12 

BCD EFG 
47 32 

GHI IJK 
13 10 

JKL 
7 

ABC BCD 
52 47 

CDE DEF 
41 35 

EFG 
32 

FGH GHI 
16 13 

HIJ IJK 
12 10 

JKL 
7 
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3.6. Trees 

A tree is a set of nodes and edges that connect pairs of nodes that connect pairs of nodes. It is an 

abstract model of a hierarchical structure. Rooted tree has the following structure: 

 One node distinguished as root. 

 Every node C except the root is connected from exactly other node P. P is C's parent, and C is 

one of C's children. 

 There is a unique path from the root to the each node. 

 The number of edges in a path is the length of the path. 

3.6.1. Tree Terminologies 

Consider the following tree. 

 

 

Root: a node without a parent.  A 

Internal node: a node with at least one child. A, B, F, I, J 

External (leaf) node:  a node without a child.  C, D, E, H, K, L, M, G 

Ancestors of a node: parent, grandparent, grand-grandparent, etc of a node.  

Ancestors of K  A, F, I 

Descendants of a node: children, grandchildren, grand-grandchildren etc of a node. 

Descendants of F H, I, J, K, L, M 

Depth of a node: number of ancestors or length of the path from the root to the node. 

Depth of H  2 

Height of a tree: depth of the deepest node.  3 

Subtree: a tree consisting of a node and its descendants. 

  

 

 

 

 

 

 

    

 

 

Binary tree: a tree in which each node has at most two children called left child and right child. 

 

 

 

 

 

 

 

 

 

 

A 

B E G F 

D C J H I 

M K L 

F 

J H I 

M K L 
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Full binary tree: a binary tree where each node has either 0 or 2 children. 

 

 

 

 

 

 

Balanced binary tree: a binary tree where each node except the leaf nodes has left and right children and 

all the leaves are at the same level. 

 

 

 

 

 

 

 

Complete binary tree:  a binary tree in which the length from the root to any leaf node is either h or h-1 

where h is the height of the tree. The deepest level should also be filled from left to 

right. 

 

 

 

 

 

 

Binary search tree (ordered binary tree):  a binary tree that may be empty, but if it is not empty it satisfies 

the following. 

 Every node has a key and no two elements have the same key. 

 The keys in the right subtree are larger than the keys in the root. 

 The keys in the left subtree are smaller than the keys in the root. 

 The left and the right subtrees are also binary search trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

  

    

 

  

   

10 

6 

7 

15 

8 4 
18 14 

12 
19 

11 

16 

13 
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3.6.2. Data Structure of a Binary Tree 

struct DataModel 

{ 

 Declaration of data fields 

 DataModel * Left, *Right; 

}; 

DataModel *RootDataModelPtr=NULL; 

3.6.3. Operations on Binary Search Tree 

Consider the following definition of binary search tree. 

struct Node 

{ 

 int Num; 

 Node * Left, *Right; 

}; 

Node *RootNodePtr=NULL; 

 

3.6.3.1. Insertion 
When a node is inserted the definition of binary search tree should be preserved. Suppose there is a 

binary search tree whose root node is pointed by RootNodePtr and we want to insert a node (that 

stores 17) pointed by InsNodePtr.  

 

Case 1:  There is no data in the tree (i.e. RootNodePtr is NULL) 

- The node pointed by InsNodePtr should be made the root node. 

 

 

 

 

 

 

Case 2:  There is data 

   - Search the appropriate position.  

   - Insert the node in that position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

RootNodePtr 

 

RootNodePtr 

17 

 

InsNodePtr 

17 

 

 

InsNodePtr 

17 

 

RootNodePtr 

10 

6 

7 

15 

8 4 18 14 

12 19 

11 

16 

13 

 

RootNodePtr 

10 

6 

7 

15 

8 4 18 14 

12 19 

11 

16 

13 17 

InsertBST(RootNodePtr, InsNodePtr)   
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Implementation:  

 

void InsertBST(Node *RNP, Node *INP) 

{ 

 //RNP=RootNodePtr and 

INP=InsNodePtr 

 int Inserted=0; 

 while(Inserted = =0) 

 { 

 if(RNP->Num > INP->Num) 

 { 

  if(RNP->Left = = NULL) 

  { 

   RNP->Left = INP; 

   Inserted=1; 

  } 

  else 

   RNP = RNP->Left; 

 } 

 else  

 { 

 if(RNP->Right = = NULL) 

  { 

  RNP->Right = INP; 

  Inserted=1; 

  } 

 else 

  RNP = RNP->Right; 

} 

} 

} 

 

 

 

 

 

 

A recursive version of the function can also 

be given as follows. 

 

void InsertBST(Node *RNP, Node *INP) 

{ 

 if(RNP->Num>INP->Num) 

 { 

  if(RNP->Left==NULL) 

   RNP->Left = INP; 

  else 

  InsertBST(RNP->Left, INP); 

  } 

  else  

  { 

  if(RNP->Right==NULL) 

   RNP->Right = INP; 

  else 

  InsertBST(RNP->Right, INP); 

  } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function call: 

if(RootNodePtr = = NULL) 

 RootNodePtr=InsNodePtr; 

else 

 InsertBST(RootNodePtr, InsNodePtr); 
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3.6.3.2. Traversing 
Binary search tree can be traversed in three ways. 

a. Pre order traversal - traversing binary tree in the order of parent, left and right. 

b. Inorder traversal - traversing binary tree in the order of left, parent and right. 

c. Postorder traversal - traversing binary tree in the order of left, right and parent. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preorder traversal -  10, 6, 4, 8, 7, 15, 14, 12, 11, 13, 18, 16, 17, 19 

Inorder traversal -  4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 

      ==> Used to display nodes in ascending order. 

Postorder traversal-  4, 7, 8, 6, 11, 13, 12, 14, 17, 16, 19, 18, 15, 10  

 

3.6.3.3. Application of binary tree traversal 
 

 - Store values on leaf nodes and operators on internal nodes 

 

Preorder traversal -  used to generate mathematical expression in prefix notation. 

Inorder traversal -  used to generate mathematical expression in infix notation. 

Postorder traversal -  used to generate mathematical expression in postfix notation. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

RootNodePtr 

10 

6 

7 

15 

8 4 18 14 

12 19 

11 

16 

13 17 

+ 

– 

B 

+ 

* A / D 

C F E 

Preorder traversal -  + – A * B C + D / E F  Prefix notation 

Inorder traversal -  A – B * C + D + E / F  Infix notation 

Postorder traversal -  A B C * – D E F / + +  Postfix notation 
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Function calls: 

  Preorder(RootNodePtr); 

  Inorder(RootNodePtr); 

  Postorder(RootNodePtr); 

 

Implementation:  

 

void Preorder (Node *CurrNodePtr) 

{ 

 if(CurrNodePtr ! = NULL) 

 { 

  cout<< CurrNodePtr->Num;   // or any operation on the node 

  Preorder(CurrNodePtr->Left); 

  Preorder(CurrNodePtr->Right); 

 } 

} 

 

void Inorder (Node *CurrNodePtr) 

{ 

 if(CurrNodePtr ! = NULL) 

 { 

  Inorder(CurrNodePtr->Left); 

  cout<< CurrNodePtr->Num;   // or any operation on the node 

  Inorder(CurrNodePtr->Right); 

 } 

} 

 

void Postorder (Node *CurrNodePtr) 

{ 

 if(CurrNodePtr ! = NULL) 

 { 

  Postorder(CurrNodePtr->Left); 

  Postorder(CurrNodePtr->Right); 

  cout<< CurrNodePtr->Num;   // or any operation on the node 

 } 

} 

 

3.6.3.4. Searching 
 

To search a node (whose Num value is Number) in a binary search tree (whose root node is pointed by 

RootNodePtr), one of the three traversal methods can be used. 

 

Function call:  

ElementExists = SearchBST (RootNodePtr, Number); 

 // ElementExists is a Boolean variable defined as: bool ElementExists = false; 
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Implementation:  
bool SearchBST (Node *RNP, int x) 

{ 

 if(RNP = = NULL) 

  return(false); 

 else if(RNP->Num = = x) 

  return(true);   

 else if(RNP->Num > x) 

  return(SearchBST(RNP->Left, x)); 

 else 

  return(SearchBST(RNP->Right, x)); 

} 

When we search an element in a binary search tree, sometimes it may be necessary for the SearchBST 

function to return a pointer that points to the node containing the element searched. Accordingly, the 

function has to be modified as follows. 

 

Function call:  

SearchedNodePtr = SearchBST (RootNodePtr, Number); 

 // SearchedNodePtr is a pointer variable defined as: Node *SearchedNodePtr=NULL; 

 
Implementation:  

 

Node *SearchBST (Node *RNP, int x) 

{ 

 if((RNP = = NULL) || (RNP->Num = = x)) 

  return(RNP); 

 else if(RNP->Num > x) 

  return(SearchBST(RNP->Left, x)); 

 else 

  return(SearchBST (RNP->Right, x)); 

} 

 

3.6.3.5. Deletion 
To delete a node (whose Num value is N) from binary search tree (whose root node is pointed by 

RootNodePtr), four cases should be considered. When a node is deleted the definition of binary search 

tree should be preserved. 

Consider the following binary search tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 13 

17 

9 4 2 

1 15 5 
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Case 1:  Deleting a leaf node (a node having no child), e.g. 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2:  Deleting a node having only one child, e.g. 2 

 

Approach 1:  Deletion by merging – one of the following is done 

 

 If the deleted node is the left child of its parent and the deleted node has only the left child, the left 

child of the deleted node is made the left child of the parent of the deleted node.     

 If the deleted node is the left child of its parent and the deleted node has only the right child, the right 

child of the deleted node is made the left child of the parent of the deleted node.     

 If the deleted node is the right child of its parent and the node to be deleted has only the left child, the 

left child of the deleted node is made the right child of the parent of the deleted node.     

 If the deleted node is the right child of its parent and the deleted node has only the right child, the right 

child of the deleted node is made the right child of the parent of the deleted node.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RootNodePtr 

10 

6 14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

Delete 7   

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 
13 

17 

9 4 2 

1 
15 5 

 

RootNodePtr 

10 

6 14 

8 3 18 12 

19 11 16 
13 

17 

9 4 1 

15 5 

Delete 2  

 

RootNodePtr 
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8 3 18 12 

19 11 16 
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17 

9 4 2 

1 
15 5 
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Approach 2: Deletion by copying- the following is done 

 Copy the node containing the largest element in the left (or the smallest element in the right) to the 

node containing the element to be deleted 

 Delete the copied node 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 3:  Deleting a node having two children, e.g. 6 

 

Approach 1:  Deletion by merging – one of the following is done 

 If the deleted node is the left child of its parent, one of the following is done 

o The left child of the deleted node is made the left child of the parent of the deleted node, and 

o The right child of the deleted node is made the right child of the node containing largest element in 

the left of the deleted node  

OR 

o The right child of the deleted node is made the left child of the parent of the deleted node, and 

o The left child of the deleted node is made the left child of the node containing smallest element in 

the right of the deleted node  

 

 If the deleted node is the right child of its parent, one of the following is done 

o The left child of the deleted node is made the right child of the parent of the deleted node, and 

o The right child of the deleted node is made the right child of the node containing largest element in 

the left of the deleted node  

OR 

o The right child of the deleted node is made the right child of the parent of the deleted node, and 

o The left child of the deleted node is made the left child of the node containing smallest element in 

the right of the deleted node  

 

 

 

 

 

 

 

 

RootNodePtr 
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Delete 2   
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Approach 2: Deletion by copying- the following is done 

 Copy the node containing the largest element in the left (or the smallest element in the right) to the 

node containing the element to be deleted 

 Delete the copied node 
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Delete 6   
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Delete 6  
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Case 4:  Deleting the root node, 10 

Approach 1: Deletion by merging- one of the following is done 

 

 If the tree has only one node the root node pointer is made to point to nothing (NULL) 

 If the root node has left child  

o the root node pointer is made to point to the left child  

o the right child of the root node is made the right child of the node containing the largest element in 

the left of the root node 

 If root node has right child  

o the root node pointer is made to point to the right child  

o the left child of the root node is made the left child of the node containing the smallest element in 

the right of the root node 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RootNodePtr 

10 

6 

7 

14 

8 3 18 12 

19 11 16 13 

17 

9 4 2 

1 15 5 

 

RootNodePtr 
 

RootNodePtr 

6 

7 

14 

8 3 

18 12 

19 11 16 13 

17 

9 4 2 

1 

15 

5 

Delete 10  
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Approach 2: Deletion by copying- the following is done 

 Copy the node containing the largest element in the left (or the smallest element in the right) to the 

node containing the element to be deleted 

 Delete the copied node 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function call:  
if ((RootNodePtr->Left==NULL)&&( RootNodePtr->Right==NULL) && (RootNodePtr->Num==N)) 

{   // the node to be deleted is the root node having no child 

RootNodePtr=NULL; 

delete RootNodePtr; 

} 

else 

DeleteBST(RootNodePtr, RootNodePtr, N); 

 

 

Delete 10  
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Implementation: (Deletion by copying) 
 

void DeleteBST(Node *RNP, Node *PDNP, int x) 

{ 

 Node *DNP; // a pointer that points to the currently deleted node 

 // PDNP is a pointer that points to the parent node of currently deleted node 

 if(RNP==NULL) 

  cout<<"Data not found\n"; 

 else if (RNP->Num>x)  

  DeleteBST(RNP->Left, RNP, x);// delete the element in the left subtree 

 else if(RNP->Num<x) 

  DeleteBST(RNP->Right, RNP, x);// delete the element in the right subtree 

 else 

 { 

  DNP=RNP; 

  if((DNP->Left==NULL) && (DNP->Right==NULL)) 

  { 

   if (PDNP->Left==DNP) 

    PDNP->Left=NULL; 

   else 

    PDNP->Right=NULL; 

   delete DNP; 

  } 

  else 

  { 

   if(DNP->Left!=NULL) //find the maximum in the left 

   { 

    PDNP=DNP; 

    DNP=DNP->Left; 

    while(DNP->Right!=NULL) 

    { 

     PDNP=DNP; 

     DNP=DNP->Right; 

    } 

    RNP->Num=DNP->Num; 

    DeleteBST(DNP,PDNP,DNP->Num); 

   } 

   else //find the minimum in the right 

   { 

    PDNP=DNP; 

    DNP=DNP->Right; 

    while(DNP->Left!=NULL) 

    { 

     PDNP=DNP; 

     DNP=DNP->Left; 

    } 

    RNP->Num=DNP->Num; 

    DeleteBST(DNP,PDNP,DNP->Num); 

   } 

  } 

 } 

} 
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Chapter Four  

4. Advanced Sorting and Searching Algorithms 

4.1. Shell Sort  

Shell sort is an improvement of insertion sort. It is developed by Donald Shell in 1959. Insertion sort 

works best when the array elements are sorted in a reasonable order. Thus, shell sort first creates this 

reasonable order. 

Algorithm: 

1. Choose gap gk between elements to be partly ordered. 

2. Generate a sequence (called increment sequence) gk, gk-1,…., g2, g1 where for each sequence gi, 

A[j]<=A[j+gi] for 0<=j<=n-1-gi and k>=i>=1 

 

It is advisable to choose gk =n/2 and gi-1 = gi/2 for k>=i>=1. After each sequence gk-1 is done and the list is 

said to be gi-sorted. Shell sorting is done when the list is 1-sorted (which is sorted using insertion sort) 

and A[j]<=A[j+1] for 0<=j<=n-2. Time complexity is O(n3/2). 

 

Example: Sort the following list using shell sort algorithm.  

 

 5 8 2 4 1 3 9 7 6 0 

 

Choose g3 =5 (n/2 where n is the number of elements =10) 

 

Sort (5, 3) 3 8 2 4 1 5 9 7 6 0 

Sort (8, 9) 3 8 2 4 1 5 9 7 6 0 

Sort (2, 7) 3 8 2 4 1 5 9 7 6 0 

Sort (4, 6) 3 8 2 4 1 5 9 7 6 0 

Sort (1, 0)  3 8 2 4 0 5 9 7 6 1 

 5- sorted list 3 8 2 4 0 5 9 7 6 1 

Choose g2 =3  

Sort (3, 4, 9, 1) 1 8 2 3 0 5 4 7 6 9 

Sort (8, 0, 7) 1 0 2 3 7 5 4 8 6 9 

Sort (2, 5, 6) 1 0 2 3 7 5 4 8 6 9 

 3- sorted list 1 0 2 3 7 5 4 8 6 9 

 

Choose g1 =1 (the same as insertion sort algorithm) 

Sort (1, 0, 2, 3, 7, 5, 4, 8, 6, 9) 0 1 2 3 4 5 6 7 8 9 

 1- sorted (shell sorted) list  0 1 2 3 4 5 6 7 8 9 

 

4.2. Quick Sort  

Quick sort is the fastest known algorithm. It uses divide and conquer strategy and in the worst case its 

complexity is O (n2). But its expected complexity is O(nlogn). 

Algorithm: 
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1. Choose a pivot value (mostly the first element is taken as the pivot value)  

2. Position the pivot element and partition the list so that: 

 the left part has items less than or equal to the pivot value 

 the right part has items greater than or equal to the pivot value 

3. Recursively sort the left part 

4. Recursively sort the right part 

 

The following algorithm can be used to position a pivot value and create partition. 

 

Left=0; 

Right=n-1; // n is the total number of elements in the list 

PivotPos=Left; 
while(Left<Right) 

{ 

 if(PivotPos==Left) 

 { 

  if(Data[Left]>Data[Right]) 

  { 

   swap(data[Left], Data[Right]); 

   PivotPos=Right; 

   Left++; 

  } 

  else 

   Right--; 

 } 

 else 

 { 

  if(Data[Left]>Data[Right]) 

  { 

   swap(data[Left], Data[Right]); 

   PivotPos=Left; 

   Right--; 

  } 

  else 

   Left++; 

 } 

} 
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5 8 2 4 1 3 9 7 6 0 

Example:  Sort the following list using 

quick sort algorithm.  

 

Pivot 

Left 

0 3 2 4 1 5 9 7 6 8 

Right 

Pivot 

Left Right 

5 8 2 4 1 3 9 7 6 0 

Pivot 

Left Right 

0 8 2 4 1 3 9 7 6 5 

Pivot 
Left Right 

0 5 2 4 1 3 9 7 6 8 

Pivot 
Left Right 

0 5 2 4 1 3 9 7 6 8 

Pivot 
Left Right 

0 5 2 4 1 3 9 7 6 8 

Pivot 
Left 

0 5 2 4 1 3 9 7 6 8 

Right 

Pivot 
Left 

0 5 2 4 1 3 9 7 6 8 

Right 

Pivot 
Left 

0 5 2 4 1 3 9 7 6 8 

Right 

Pivot 

Left 

0 3 2 4 1 5 9 7 6 8 

Right 

Pivot 

Left 

0 3 2 4 1 5 9 7 6 8 

Right 

5 

Pivot 
Left 

0 3 2 4 1 

Right 

9 7 6 8 

Left 
Pivot 

Right 

8 7 6 9 
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4.3. Heap Sort  
Heap sort operates by first converting the list in to a heap tree. Heap tree is a binary tree in which each 

node has a value greater than both its children (if any). It uses a process called "adjust to accomplish its 

task (building a heap tree) whenever a value is larger than its parent. The time complexity of heap sort is 

O(nlogn). 

 

Algorithm: 

1. Construct a binary tree  

 The root node corresponds to Data[0]. 

 If we consider the index associated with a particular node to be i, then the left child of this 

node corresponds to the element with index 2*i+1 and the right child corresponds to the 

element with index 2*i+2. If any or both of these elements do not exist in the array, then the 

corresponding child node does not exist either. 

2. Construct the heap tree from initial binary tree using "adjust" process.  

3. Sort by swapping the root value with the lowest, right most value and deleting the lowest, right 

most value and inserting the deleted value in the array in it proper position. 

 

Example:  Sort the following list using heap sort algorithm. 

 

5 8 2 4 1 3 9 7 6 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Swap the root node with the lowest, right most node and delete the lowest, right most value; insert the 

deleted value in the array in its proper position; adjust the heap tree; and repeat this process until the 

tree is empty. 
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4.4. Merge Sort  

Like quick sort, merge sort uses divide and conquer strategy and its time complexity is O(nlogn). 

 

Algorithm: 

1. Divide the array in to two halves. 

2. Recursively sort the first n/2 items. 

3. Recursively sort the last n/2 items. 

4. Merge sorted items (using an auxiliary array). 

 

Example:  Sort the following list using merge sort algorithm.  

 

5 8 2 4 1 3 9 7 6 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

5 8 2 4 1 3 9 7 6 0 

5 8 2 4 1 3 9 7 6 0 

5 8 2 4 1 3 9 7 6 0 
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1 4 

5 8 1 2 4 3 9 0 6 7 

0 6 

1 2 4 5 8 0 3 6 7 9 

0 1 2 3 4 5 6 7 8 9 

Division phase 

Sorting and merging phase 
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Chapter Five 

5. Hashing Algorithm 

All of the searching techniques we have seen so far operate by comparing the value being searched for 

with the values of a key value of each element. For example, when searching for an integer val in a binary 

search tree, we compare val with the integer (the key) stored at each node we visit. Such searching 

techniques vary in their complexity, but will always be more than O(1). 

 

Hashing is an alternative way of storing data that aims to greatly improve the efficiency of search 

operations. With hashing, when adding a new data element, the key itself is used to directly determine the 

location to store the element. Therefore, when searching for a data element, instead of searching through a 

sequence of key values to find the location of the data we want, the key value itself can be used to directly 

determine the location in which the data is stored. This means that the search time is reduced from O(n), 

as in sequential search, or O(log n), as in binary search, to O(1), or constant complexity. Regardless of the 

number of elements stored, the search time is the same. 

 

The question is, how can we determine the position to store a data element using only its key value? We 

need to find a function h that can transform a key value K (e.g. an integer, a string, etc.) into an index into 

a table used for storing data. The function h is called a hash function. If h transforms different keys into 

different indices it is called a perfect hash function. (A non-perfect hash function may transform two 

different key values into the same index.) 

 

Consider the example of a compiler that needs to store the values of all program variables. The key in this 

case is the name of the variable, and the data to be stored is the variable’s value. What hash function could 

we use? One possibility would be to add the ASCII codes of every letter in the variable name and use the 

resulting integer to index a table of values. But in this case the two variables abc and cba would have the 

same index. This problem is known as collision and will be discussed later in this handout. The worth of a 

hash function depends to a certain extent on how well it avoids collisions. 

5.1 . Hash Functions 

Clearly there are a large number of potential hash functions. In fact, if we wish to assign positions for n 

items in a table of size m, the number of potential hash functions is mn, and the number of perfect hash 

functions is  
)!(

!

nm

m


. Most of these potential functions are not of practical use, so this section discusses a 

number of popular types of hash function. 

 

Division 
A hash function must guarantee that the value of the index that it returns is a valid index into the table 

used to store the data. In other words, it must be less than the size of the table. Therefore an obvious way 

to accomplish this is to perform a modulo (remainder) operation. If the key K is a number, and the size of 

the table is Tsize, the hash function is defined as h(K) = K mod TSize. Division hash functions perform 

best if the value of TSize is a prime number. 
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5.1.1. Folding 
Folding hash functions work by dividing the key into a number of parts. For example, the key value 

123456789 might be divided into three parts: 123, 456 and 789. Next these parts are combined together to 

produce the target address. There are two ways in which this can be done: shift folding and boundary 

folding. 

 

In shift folding, the different parts of the key are left as they are, placed underneath one another, and 

processed in some way. For example, the parts 123, 456 and 789 can be added to give the result 1368. To 

produce the target address, this result can be divided modulo TSize. 

 

In boundary folding, alternate parts of the key are left intact and reverse. In the example given above, 123 

is left intact, 456 is reversed to give 654, and 789 is left intact. So this time the numbers 123, 654 and 789 

are summed to give the result 1566. This result can be converted to the target address by using the modulo 

operation. 

 

5.1.2. Mid-Square Function 
In the mid-square method, the key is squared and the middle part of the result is used as the address. For 

example, if the key is 2864, then the square of 2864 is 8202496, so we use 024 as the address, which is 

the middle part of 8202496. If the key is not a number, it can be pre-processed to convert it into one. 

 

Extraction 
In the extraction method, only a part of the key is used to generate the address. For the key 123456789, 

this method might use the first four digits (1234), or the last four (6789), or the first two and last two 

(1289). Extraction methods can be satisfactory so long as the omitted portion of the key is not significant 

in distinguishing the keys. For example, at Mizan-Tepi University many student ID numbers begin with 

the letters “SCIR”, so the first three letters can be omitted and the following numbers used to generate the 

key using one of the other hash function techniques. 

 

5.1.3. Radix Transformation 
If TSize is 100, and a division technique is used to generate the target address, then the keys 147 and 247 

will produce the same address. Therefore this would not be a perfect hash function. The radix 

transformation technique attempts to avoid such collisions by changing the number base of the key before 

generating the address. For example, if we convert the keys 14710 and 24710 into base 9, we get 1739 and 

3049. Therefore, after a modulo operation the addresses used would be 47 and 04. Note, however, that 

radix transformation does not completely avoid collisions: the two keys 14710 and 6610 are converted to 

1739 and 739, so they would both hash to the same address, 73. 

 

5.1.4. Collision Resolution 
If the hash function being used is not a perfect hash function (which is usually the case), then the problem 

of collisions will arise. Collisions occur when two keys hash to the same address. The chance of collisions 

occurring can be reduced by choosing the right hash function, or by increasing the size of the table, but it 

can never be completely eliminated. For this reason, any hashing system should adopt a collision 

resolution strategy. This section examines some common strategies. 
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5.1.4.1. Open Addressing 

 

In open addressing, if a collision occurs, an alternative address within the table is found for the new data. 

If this address is also occupied, another alternative is tried. The sequence of alternative addresses to try is 

known as the probing sequence. In general terms, if position h(K) is occupied, the probing sequence is 

 

 )),()((,)),2()(()),1()(( ipKhnormpKhnormpKhnorm   

 

Where function p is the probing function and norm is a normalization function that ensures the address 

generated is within an acceptable range, for example the modulo function. 

 

The simplest method is linear probing. In this technique the probing sequence is simply a series of 

consecutive addresses; in other words the probing function p(i) = i. If one address is occupied, we try the 

next address in the table, then the next, and so on. If the last address is occupied, we start again at the 

beginning of the table. Linear probing has the advantage of simplicity, but it has the tendency to produce 

clusters of data within the table. For example, Figure 1 shows a sequence of insertions into a hash table 

using the following key/value pairs: 

 

Key Value 

15 A 

2 B 

33 C 

5 D 

19 E 

22 F 

9 G 

32 H 

 

The first three insertions (A, B and C) do not result in collisions. However, when data D is inserted it 

hashes to the address 5, which is currently occupied by A, so it is placed in the next address. Similarly, 

when data F is inserted at address 2 it collides with B, so we try address 3 instead. Here it collides with C, 

so we have to place it at address 4. Data G also collides with E at address 9, so because 9 is the last 

address in the table we place it at address 1. Finally data H collides with 5 different elements before being 

successfully placed at address 7. 

 

 
 

Figure 1 – Collision resolution using linear probing. 

We can see in Figure 1 that there is a cluster of 6 elements (from addresses 2 to 7) stored next to each 

other. The problem with clusters is that the probability of a collision for a key is dependent on the address 
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that it hashes to. Clustering can be avoided by using a more careful choice of probing function p. One 

possible choice is to use the sequence of addresses 

 

,)(,)( 22 iKhiKh   for i = 1, 2, ... , (Tsize – 1) / 2. 

 

Including the original attempt to hash K, this formula results in the sequence h(K), h(K) + 1, h(K) – 1, 

h(K) + 4, h(K) – 4, etc. All of these addresses should be divided modulo Tsize. For example, for the H2 

data in Figure 1, we first try address 2, then address 3 (2 + 1), and then address 1 (2 – 1), where the data is 

successfully placed. This technique is known as quadratic probing. Quadratic probing results in fewer 

clusters than linear probing, but because the same probing sequence is used for every key, sometimes 

clusters can build up away from the original address. These clusters are known as secondary clusters. 

 

Another possibility, which avoids the problem of secondary clusters, is to use a different probing 

sequence for each key. This can be achieved by using a random number generator seeded by a value that 

is dependent on the key. Remember that random number generators always require a seed value, and if 

the same seed is used the same sequence of ‘random’ numbers will be generated. So if, for example, the 

value of the key (if it is an integer), were to be used, each different key would generate a different 

sequence of probes, thus avoiding secondary clusters. 

 

Another way to avoid secondary clusters is to use double hashing. Double hashing uses two different 

hashing functions: one to find the primary position of a key, and another for resolving conflicts. The idea 

is that if the primary hashing function, h(K), hashes two keys K1 and K2 to the same address, then the 

secondary hashing function, hp(K), will probably not. The probing sequence is therefore 

 

 ),()(,),(2)(),()(),( KhiKhKhKhKhKhKh ppp   

 

Experiments indicate that double hashing generally eliminates secondary clustering, but using a second 

hash function can be time-consuming. 

 

5.1.4.2. Chaining 
In chaining, each address in the table refers to a list, or chain, of data values. If a collision occurs the new 

data is simply added to end of the chain. Figure 2 shows an example of using chaining for collision 

resolution. 

 

Provided that the lists do not become very long, chaining is an efficient technique. However, if there are 

many collisions the lists will become long and retrieval performance can be severely degraded. 

Performance can be improved by ordering the values in the list (so that an exhaustive search is not 

necessary for unsuccessful searches) or by using self-organising lists. 

 

An alternative version of chaining is called coalesced hashing, or coalesced chaining.  In this method, the 

link to the next value in the list actually points to another table address. If a collision occurs, then a 

technique such as linear probing is used to find an available address, and the data is placed there. In 

addition, a link is placed at the original address indicating where the next data element is stored. Figure 3 

shows an example of this technique. When the keys D5 and F2 collide Figure 3b, linear probing is used to 

position the keys, but links from their original hashed addresses are maintained. Variations on coalesced 

hashing include always placing colliding keys at the end of the table, or storing colliding keys in a special 

reserved area known as the cellar. In both cases a link from the original hashed address will point to the 
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new location. The advantage of coalesced hashing is that it avoids the need to make a sequential search 

through the table for the required data in the event of collisions. 

 

 
 

Figure 2 – Collision resolution using chaining. 

 

 

 
 

Figure 3 – Collision resolution using coalesced hashing. 
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5.1.4.3. Bucket Addressing 
 

Bucket addressing is similar to chaining, except that the data are stored in a bucket at each table address. 

A bucket is a block of memory that can store a number of items, but not an unlimited number as in the 

case of chaining. 

 

Bucketing reduces the chance of collisions, but does not totally avoid them. If the bucket becomes full, 

then an item hashed to it must be stored elsewhere. Therefore bucketing is commonly combined with an 

open addressing technique such as linear or quadratic probing. Figure 4 shows an example of bucketing 

that uses a bucket size of 3 elements at each address. 

 

 

 
 

Figure 4 – Collision resolution using bucketing. 
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