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Abstract 

This research proposed a robust and easily applied method for tuberculosis (TB) screening 

system based on the analysis of patients' cough sounds. There are various existing 

diagnostic tests for TB, but they are expensive and require highly skilled physicians and 

laboratory facilities. Therefore, there is a need for a low-cost, quick-to-diagnose, and easily 

accessible solution for diagnosing TB in developing countries using a patient's cough 

sound. The coughing sound of patients with TB have distinct mathematical features or 

information that can indicate a disease. The use of patients' cough sounds to diagnose 

pulmonary diseases is an active research field with promising results; however, a robust 

system for diagnosing tuberculosis using cough sounds is currently unavailable 

commercially. 

For this research, a dataset of 6476 cough and non-cough sound events was collected from 

patients with various respiratory diseases from Bahir Dar Felege Hiwot compressive 

specialized hospital using three different recorders. An automatic cough detection and 

classification system were implemented using an artificial neural network (ANN) and a 

support vector machine. The algorithms used Mel frequency cepstral coefficient (MFCC) 

features to detect cough sound from the recording, and then classify it as TB or non-TB. 

The MFCCs are machine-based methods for detecting and classifying sounds by mimic 

human hearing perception. Audio signal processing was done to extract the robust MFCC 

features, which were achieved by pre-processing and feature engineering efforts. The ANN 

outperforms the SVM in cough detection, with a 98.2% accuracy and an F1-score of 98.1%, 

and in TB/non-TB classification, with a 92.3 % accuracy and an F1-score of 87.7%. 

The result shows the potential of the proposed cough sound analysis framework for the 

diagnosis of TB. This study contributes to the development of a robust TB diagnosis system 

that addresses fundamental gaps in the cough sound analysis area and can be transformed 

into a cost-effective alternative to the existing diagnosis. 

Key Words: Mel frequency cepstral coefficient, Neural Network, Tuberculosis, Robust 
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Chapter 1 

Introduction 

1.1. Overview and Motivation 

Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (MTB) 

which mainly affects the lungs. It is one of the top 10 killers worldwide, with 30 countries 

including Ethiopia accounted for 90% of the incidence [1]. The symptoms of TB include 

coughing that lasts three or more weeks, fatigue, fever, night sweats, and loss of appetite. 

Provided the correct medication that allows the patient to take antimicrobial drugs for 6 

months, TB is a curable and treatable disease [2]. There are various existing tests for TB 

such as chest radiography, tuberculin skin test, and gene-Xperts, but they are expensive or 

need highly skilled physicians and laboratory facilities [1], [3]. Therefore, there is a need 

for an inexpensive, quick diagnosis process and easily accessible solution for TB diagnosis 

in developing countries.  

The coughing sound of a patient with pulmonary TB contains information indicative of the 

infection [4]. Features like the power spectrum of cough sound and mathematical features 

are used to train intelligent algorithms to enable the automatic detection of TB [4]. This 

hypothesis is central to the proposed research, which will robust cough analysis system for 

diagnosis of TB from cough sound. Cough analysis has evolved to be automated and robust 

and it is clear that the modeling of the human auditory system is the direction of computer 

cough detection and classification. The motivation in doing this research was to develop a 

fully automatic and robust method for diagnosing TB from a patient's cough sound using a 

computer, which could be easily applied in resource-poor countries, in rural areas, refugee 

camps, and displaced accommodations. 

1.2.  Background 

This section describes five subtopics connected with the study. The first is the human 

respiratory system specifically the lung, which is the source of the sound signal including 

cough. Secondly, tuberculosis, which is a pulmonary disease caused by lung-attacking 

bacteria. Third, the causes of coughing, and diagnosis of cough. Fourth, the human auditory 
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system (modeled in this study), which is used to sense the acoustic environment so that 

sound can be heard, and the perceived system and the range of human hearing. Finally, 

hypotheses for the automatic cough analysis system for the diagnosis of pulmonary disease 

are mentioned.  

1.2.1. The Human Respiratory System 

The human Respiratory System is a system that processes oxygen inhalation and carbon 

dioxide exhalation to fulfill energy requirements and consists of all the organs involved in 

respiration such as, nasal cavity, oral cavity, pharynx, epiglottis, larynx, trachea, and lungs. 

Its main purpose is to supply oxygen to the body and dispose of carbon dioxide, but it’s 

also used to warming, filtering, and humidifying the inhaled air [5].  During inhalation, the 

oxygen first reaches the mouth or nose and travels into the larynx and the trachea, which 

then branches into two bronchi. Then each bronchus bifurcates to form smaller branches 

and form several pathways within the lung and ends with alveoli. In the alveoli, gas 

exchanges take place. After the gas exchange, exhalation starts and the air containing 

carbon dioxide starts the return journey through the nose and mouth back to the outside 

[6]. Filtering, warming, and humidifying the air is the main function of the upper tract 

(organs outside the chest cavity), and the lower tract (organs almost entirely inside the chest 

cavity) is for the exchange of gases [7]. Different respiratory diseases are present and may 

affect any part of the respiratory system. Their differentiation lies in the cause of infection 

or area they have struck. Bacteria, viruses, fungi, or toxins may cause respiratory diseases 

[8].  

Depending on the region impacted, respiratory system infections can be classified into 

upper tract infection (UTI) and lower tract infection (LTI). UTI, which can affect the nose, 

sinus, and throat consists of diseases, including influenza, the common cold, tonsillitis, 

and, sinusitis [9]. LTI consists of diseases that can affect the bronchi and lungs, such as 

tuberculosis, bronchitis, and pneumonia. 
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Figure 1.2-1 Human respiratory system, taken from [10] 

The symptoms of respiratory system infections may differ depending on the type of germs 

affecting the body and include coughing, chest pain, and fatigue [9]. 

The respiratory system consists of several organs, as shown in Figure 1.2-1, the lungs, 

however, are the main respiratory organs where gas exchange takes place.  To stay alive 

and safe, each cell of our body requires oxygen but also requires the removal of carbon 

dioxide [11]. The heart is responsible for pumping blood and supplying oxygen to the 

organs of the body. During expiration, the carbon dioxide-carrying blood cells return to the 

lungs and exhale the carbon dioxide [12]. Different lung diseases are present, some of them 

are: 

• Asthma: - is the most common chronic lung condition, and attacks happen when 

the airways tighten and narrow, slowing down airflow. The lungs also become 

swollen and inflamed. 
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• Bronchitis: - this chest infection happens in the main airways, the bronchi. It may 

be due to a viral or bacterial infection.  

• Pneumonia: -This is a chest infection deep in the bronchioles and alveoli. Pus and 

mucus can build up, and the lungs may swell. This makes it difficult to breathe.  

• Tuberculosis: This is a bacterial infection spread through air droplets from coughs 

and sneezes.  

There are many lungs functional tests, such as arterial blood gas tests, blood tests, chest X-

rays, exhaled nitric oxide tests, lung diffusion capacity, pulse oximetry, spirometry, sputum 

(spit), or mucus sample [11]. 

1.2.2.  Tuberculosis 

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, and typically 

affects the lungs but can affect other parts of the body as well. The disease is transmitted 

via droplet infection while people infected with TB expel the bacilli’s when coughing, 

talking, and sneezing. Tuberculosis is one of the world's top 10 killer diseases, and an 

estimated 10.0 million people with TB have fallen ill.  In 2019, 1.2 million TB deaths were 

registered among HIV-negative individuals and an additional 208 000 deaths among HIV-

positive individuals [1]. About one-third of the world's population, are estimated to have 

latent TB and are thus at the risk of developing active TB. World health organization 

(WHO) lists the 30 highest TB burden countries, which accounted for 90% of the world's 

cases. Ethiopia is one of the highest TB burden countries [1]. There are various existing 

tests for TB, with their pros and cons, some of them are listed in table 1.2-1. 

Table 1.2-1. Summary of traditional diagnosis techniques for TB. 

Test Name Short Descriptions pros  cons  

Smear 

Microscopy 

Sputum samples are viewed under a microscope to 

check for MTB. 

Inexpensive 

[3] 

low accuracies [3]. 

Sputum 

Culturing 

This process involves growing the TB bacteria on 

solid media from a sputum sample.  

more sensitive need a higher 

infrastructure and longer 

diagnosis process [1]. 
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Chest 

Radiography 

CT-scan and X-ray can be applied to the chest to 

view TB manifestations in the lungs. An X-ray will 

show areas of the lung that are clogged up or 

scarred. 

effective and 

fast 

need expensive equipment 

and experienced doctors 

[3]. 

Tuberculin 

Skin Test 

Tests the hypersensitivity of a patient to a derived 

form of MTB by injecting a small amount of fluid 

called tuberculin into the patient arm.  

inexpensive  interpretation of the result 

is difficult; the 

effectiveness of the test 

relies on the level of 

medical expertise [13]. 

GeneXpert new diagnosis and recommended by WHO.  comprehensive 

and effective 

expensive [13] 

These diagnosis techniques are expensive or need highly skilled physicians and laboratory 

facilities. The world needs an inexpensive, quick diagnosis process, and available rapid 

point-of-care testing for diagnosing TB to end the TB epidemic.  

1.2.3. Causes of Coughing and Diagnosis of Cough. 

Coughing is one of the signs and symptoms of TB and other lung diseases. Coughing is the 

normal biological protective mechanism, which is an expulsive reflection of the body in 

the existence of a chemical or physical substance unfamiliar to the organ [14]. Coughing 

can occur when a cough receptor is triggered by external substances such as bacteria, 

viruses, smoke, or dust. Cough receptors can be found in several regions of the respiratory 

system and are linked to the cough center in the medulla oblongata. If cough receptors are 

triggered, the cough center sends signals to the respiratory system to contract to remove the 

foreign substance [15]. 

Coughs have various features and can provide a significant indicator of respiratory changes 

that can be related to clinical diagnosis [16]. As an indicator of respiratory changes, 

subjective measures of the cough events frequency have been used in the past, however, 

the self-report measures may be inaccurate [17]. Since it depends heavily on the patient's 

ability to explain the cough accurately and on the doctor's understanding and hearing 

ability.  
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1.2.4. The Human Auditory System and Range of Hearing 

The human auditory system is compacted with two auditory sensor organs, the ears, 

attached to the brain stem from either side of the head with a network of high-speed nerve 

cells. The brain stem redirects audio input from the ears to the auditory cortex, a part of the 

brain that specializes in audio processing. The ears are organs that provide two primary 

functions, hearing and balance, which rely on hair cells called specialized receptors. The 

ear seen in Figure 1.2-2 can be divided into, the outer ear, the middle ear, and the inner ear 

[18].   

The outer ear contains an ear canal lined with hair and wax-secreting glands and protects 

the middle and inner ear, channels sound to the middle ear, and aids in sound localization. 

The middle ear consists of an eardrum and three small bones that hold it in place. The 

primary middle ear's purpose is to pass sound from the eardrum to the inner part of the ear 

and to balance the impedance between the medium by which the sound waves propagate 

(mostly air) and the fluid inside the cochlea. The inner ear regulates the sense of balance 

of the body and includes the hearing organ. The cochlea is located in the inner ear, a snail-

shaped cavern filled with hair cells transmitted via the auditory nerve that translate sound 

into neural signals.  The basilar membrane located in the inner ear has the main feature, in 

the beginning, it is thin and stiff and at the end, it is wide and sloppy When rolled out, the 

hairs closest to the middle ear connection are short and rigid, and the farther away from the 

middle ear, the longer and softer they become [19]. This allows different hairs to have 

different frequencies of resonance, allowing us to discriminate between different pitches. 

At a certain level, a particular wave frequency can interact perfectly with the fibers, causing 

them to vibrate rapidly. The position of these hairs represents a log-like distribution with 

hairs that resonate at lower frequencies more sparsely spaced and hairs resonating at a 

higher frequency more tightly spaced. This log-like spacing allows our hearing spectrum 

at lower frequencies to be more. 
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Figure 1.2-2. Anatomy of the human ear, taken from [20] 

The cochlea function can be considered to be identical to the Fourier transform, 

transforming raw sound vibrational waves into neural signals in the frequency domain [21]. 

A healthy person's natural human hearing range is typically between 20Hz and 20000Hz 

frequencies [22]. Sounds above 20kHz are called ultrasounds and below 20Hz are called 

infrasound. Compared to humans, many animals have a larger hearing range and pick up 

infrasonic and ultrasonic signals. The perceived sound signal, however, is influenced not 

only by the pitch (frequency) but also by the loudness (amplitude) [23].  Decibels (dB) are 

the unit used to measure sound loudness. The required loudness for perceived hearing at 

20 kHz exceeds the pain threshold, leading to the end of the human audible range. Note 

that the hearing threshold is at the lowest point in the 3kHz to 5kHz range, which means 

our ears are most sensitive to sounds within this range.  

To understand complex sounds, we must be able to differentiate between the different 

pitches that make up the sound. As sound waves force the hairs to vibrate inside the cochlea, 

the hairs which resonate with the vibrational frequency are activated, but some nearby hairs 

are also stimulated, forming the crucial band. Within the same critical band, two sounds 

cannot be distinguished in terms of pitch [24]. Low-frequency audio sounds have narrower 
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critical bands, making them more suited to identifying pitch at lower frequencies than 

higher-frequency sounds.  

1.2.5. Automatic Cough Analysis System 

Cough analysis has evolved to be automated and robust and it is clear that the modeling of 

the human auditory system is the direction of computer cough detection and classification. 

Cough offers significant information on the health of the airways and is very useful in 

assessing the disease [25] [26]. Analysis of the cough sound using digital signal processing 

is to calculate the spectral features of cough sound events, which are then used by intelligent 

algorithms to diagnose various pulmonary diseases. Detection and classification of cough 

sounds have been an area of research since 1989 to the diagnosis of different pulmonary 

diseases [27]. Cough analysis consists of two main stages, cough event detection and cough 

event classification to a specific disease. There are several studies on cough detection and 

classification, discussed in detail in chapter 2 of this paper. This research will focus on 

methods of both detection and classification of cough events for the diagnosis of TB. The 

coughing sound of a patient with pulmonary TB contains distinct information indicative of 

the infection [28]. The power spectrum of cough sound and mathematical features are used 

to train intelligent algorithms to enable the automatic detection of TB [4]. This hypothesis 

is central to the proposed research, which will automatically detect TB from cough sounds. 

The algorithms and techniques used for cough detection and classifications are discussed 

in detail in chapter 4 of this paper.  The process of cough detection and classification is a 

relatively well-researched field, however, to the best of my knowledge no robust system 

for diagnosis of TB using cough sound is commercially available at this time. 

1.3.   Statement of the Problem  

The traditional TB diagnostic techniques are time-consuming, or expensive, need 

experienced experts to interpret results. But highly trained physicians and state the art TB 

diagnosis equipment are scarce in resource-poor countries in general and specifically, in 

rural areas. Therefore, there is a need for an innovative point-of-care test that is quick, low 

cost, user-friendly, and highly accurate so that it aids the clinician to effectively diagnosis 
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pulmonary TB. Despite efforts and promising results in the use of cough sound for 

diagnosis of various pulmonary diseases, robustness to various recording environments and 

different types of recorders, as well as fully automating the process by integrating cough 

sound detection and classification, remains a challenging task.  

The previous study for TB diagnosis used data from TB patients and healthy people, but 

data from patients with diseases similar to TB were not included. This TB-positive and 

healthy individuals' cough classification yielded less robust. The classification between 

coughs caused by TB and coughs caused by other lung diseases has yet to be investigated.  

The second limitation of the previous study for tuberculosis diagnosis was that cough 

sounds were recorded in a specially designed facility under controlled environments. There 

was no background noise, and the silences had a consistent energy level, but this differs 

from realistic conditions. This thesis proposes a robust signal preprocessing method for 

removing background noise and versatile energy level silences from data recorded in noisy 

environments (clinical settings in real-world environments). This method is advantageous 

because it is analogous to real-world conditions. 

In the previous study, humans manually detected and extracted cough events among other 

non-cough sounds by listening to recordings. The procedure is time-consuming, difficult 

to implement in practice, and requires extra effort. In this research, the proposed method 

automatically extracts cough events from recordings and categorizes them as TB or non-

TB cough. It is simple and effective to implement into practice. 

In general, the sight of this study will be to implement an algorithm that is robust to various 

pulmonary diseases, recording environments, and different recording devices. 

1.3.1. Research Questions 

The primary research goal of this study is to address the following questions. 

RQ1. How to remove silences from sound recordings recorded in real-world noisy 

environments, and how to compensate for waveform amplitude variations?  
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RQ2. Is there a mathematical feature that distinguishes a patient's cough from other sounds 

such as laugh, speech, or throat clearing? 

RQ3. Can a computer mimic and enhance human hearing mechanisms to distinguish 

between TB patients' coughs and coughs of other lung diseases? 

1.4.   Objective  

The general objective of this thesis research is to design and implement a robust 

automatic cough analysis system for the diagnosis of TB. 

1.4.1.1. Specific Objective  

 
 

Specific objectives are:  

• To collect and construct a robust cough sound dataset for cough detection and 

classification models.  

• To investigate currently available methods by using the constructed dataset and 

investigate robust feature engineering on signal pre-processing and feature extraction. 

• To extract features from cough sounds for cough detection and features from cough 

sounds that can discriminate TB-induced cough from other types of coughs.  

• To investigate learning algorithm classifier models, and compare their performance.  

1.5. Scope and Importance of the Research 

Many pulmonary diseases have the unique signature of cough sounds, in this research only 

the robust classification of coughs as either TB or non-TB were performed through spectral 

cough audio analysis.  

In developing countries like Ethiopia, TB is one of the most common and deadliest 

respiratory diseases. The traditional techniques of TB diagnosis need expensive diagnosis 

equipment with highly trained physicians.  But, the scarcity of physicians, longer diagnosis 

process, expensive equipment, and the high cost of diagnosis in rural areas, refugee camps, 

displaced accommodations, and countries at war prevent an early diagnosis. To effectively 

end the epidemic WHO sets three strategic pillars, one is intensified research and innovation. 
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So, this study contributes by providing a research-based low-cost alternative point of care 

solution for the early diagnosis of TB.   

1.6. Methodology 

The methodology followed in this research was: 

• Related Works were reviewed to investigate the problem and potential solutions to the 

cough sound analysis.  

• Medical data, that was cough and other sound recordings were collected from Bahirdar 

Felege Hiwot compressive specialized hospital. 

• The dataset was constructed from the collected recordings using the audio editing 

software tool audacity. 

• The signal was pre-processed to remove background noise and silence from the 

recordings, then normalized and segmented each sound event. 

• Robust features (Mel Frequency Cepstral Coefficients (MFCCs)) were extracted from 

cough and non-cough sounds. 

• Cough detection and classification learning models have been implemented. 

• Finally, the results were discussed and evaluated. 

1.7. Contribution of the thesis 

This research contributes to the advancement and novel methods of automatic cough 

analysis methods for TB diagnosis using cough analysis. The contributions are: 

• The development of a robust cough dataset in this study will be useful for future 

research in this area. The dataset used in this study was robust in terms of dataset 

size, the number of patients, diversity of diseases (twelve different pulmonary 

diseases), and also diversity of recording devices (three different recording devices 

to record sounds).  

• This study adds a robust technique for signal preprocessing and feature extraction 

for tuberculosis diagnosis using patients' cough sounds.  
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• Another novel contribution of this study is the integration of an automated cough 

detection system with a TB/non-TB cough classification system. This is the first 

study in this field to differentiate TB cough from other similar lung diseases cough 

with high classification accuracy, and the proposed method can help clinicians in 

resource-limited areas. 

1.8. Outline of the Thesis 

The thesis is organized into six chapters as follows:  

• Chapter 2, describe the literature review part of the thesis about automatic cough 

detection and classification. 

•  Chapter 3, explains the data acquisition systems, and dataset preparations 

• Chapter 4, the applied methods and approaches used for automatic cough detection 

and classification. 

• Chapter 5, describes the results and discussion of the proposed robust cough 

detection and a classification framework.  

• Chapter 6, concludes the work and presents recommendations for future 

improvements.
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Chapter 2 

Literature Review 

2.1.  Introduction 

Researches related to cough sound analysis could be cough detection, cough counting, and 

cough classification. It uses spectral features and is usually used for the analysis of cough 

frequency, to a specific disease.  Cough detection also is used in spirometry [29]. Several 

methods were proposed in recent times for the automatic detection, counting, and 

classification of cough as described in section 2.2. 

2.2. Specific Researches on Cough Detection and Classifications 

A cough detection algorithm for continuous cough counting systems using an event 

detection algorithm by thresholding a smoothed energy measure has been designed in [30], 

[31]. A cough monitoring system for patient recovery from pulmonary TB has been 

designed in [31]. The system was implemented in three different classifiers multilayer 

perceptron (MLP) neural network, sequential minimal optimization, and SVM using 

MFCC features. They reported 88.2 % accuracy and 81% sensitivity for MLP and 86.4 % 

accuracy and 81% sensitivity for sequential minimal optimization.  

Cough sound analysis has been designed to distinguish between a cough and non-cough 

sounds from patients that have pulmonary diseases has been designed in [32], [33]. The 

recording was performed at a 44 kHz sampling rate and 16 bits per sample resolution in 

[33]. Features such as kurtosis, skewness, the slope of the power spectral density, Mel -

frequency Cepstral coefficients (MFCC) are used to develop models. The system was 

implemented using decision trees and ANN. They reported 28% sensitivity and 99% 

specificity using the decision tree and 82% sensitivity and 96% specificity using the ANN 

classification method.  

Leicester cough monitor system has been developed using hidden Markov models for 

counting cough in [34], [35]. The collected sound signals were from 15 patients with 

different diseases such as asthma, eosinophilic bronchitis, and gastro-oesophageal reflux 
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[35]. The algorithm of cough detection was based on the technique used effectively in the 

recognition of speech, which is a keyword spotting approach to detect segments of a cough 

in the same manner as phonemes are detected in speech recognition. This method achieved 

86% sensitivity and 99% specificity for detecting cough sounds. 

Automatic cough events detection was constructed using spectral features from acoustic 

signals using a logistic regression model to classify cough from non-cough signals, in [36]. 

The performance of the algorithm was evaluated on 980 coughs and more than 1000 non-

cough sounds events, from 43 patients. The algorithm achieved specificity, sensitivity, and 

F1 scores of 98.14%, 90.31%,  and 88.70% respectively. 

In [37], a cough detector using a wearable microphone was developed based on neural 

networks. The model is trained with audio recordings collected from 9  pulmonary disease 

patients. A frame of 200ms was split into four windows of 50ms, and 42 features (13 

MFCCs, 13 deltas, 13  delta-delta, and 3 log energy ) were computed from each window. 

A total of 168 features were used by the DNN model to effectively discriminate coughing 

from background noise and achieved a specificity of 93.7%  and a sensitivity of 97.6%. 

Cough sound signals were pre-processed to suppress the noise and classified using SVM 

into various respiratory disorders in [38], [39]. The fourth-order Butterworth high pass 

filter was used to reduce the effect of noise from the cough sound in [39]. Shannon entropy, 

MFCCs, and ZCR features were extracted after the suppression of noise from cough 

signals. The SVM has been trained with a 374x46 feature size and tested with a 94x46 

feature size and provided 98.9% accuracy. 

Local Hu moments as a feature set was proposed in [40], for automatic cough event 

detection. They used Hu moments to collect the same information from cough events, 

despite the level of contamination due to background noise. This algorithm shared a feature 

set with MFCC, which is widely used in audio signal processing. The relationship between 

frequency bands among windows using block processing is taken into account by Hu 

moments, but MFCC does not. They designed this feature to enhance the robustness against 

MFCC noise, which unexpectedly resulted in MFCC becoming more robust for their 
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metrics. The use of spectral features and two classifiers (SVM and k-NN) for the detection 

of cough in noisy environments was presented and the evaluation was conducted using 16-

hour recordings from pulmonary patients.  Using local Hu moments as a feature set and a 

k-NN classifier, the best efficiency they recorded was 88.51% sensitivity and 99.77% 

specificity, but MFCC had the best performance.  

For the detection of cough, principal components analysis (PCA) and deep learning 

networks (DLN) based on TensorFlow were used in [41]. Feature extraction was done 

using PCA, model training using DLN, and graph model computation was used by 

TensorFlow. The model was trained with a dataset consisting of 810 events (303 coughs, 

and 507 other non-cough sounds) recorded from eight volunteers. PCA+DLN achieved an 

accuracy of 0.989, while DLN achieved an accuracy of 0.983, showing that the PCA+DLN 

model performed better than the DLN model. 

The author in [42], proposed a machine hearing system for audio-based cough 

segmentation based on a high-level representation of band-specific audio features. The 

record sound signals from 13 adult patients in waveform audio file format, at 44.1 kHz 

sample rate, with 16 bits resolution, and manually annotated.  To compute the mean and 

standard deviation of short-term descriptors in 300ms lengthy frames, five frequency bands 

have been defined and cough detection was performed using an SVM trained with data 

from different noisy situations. Using twenty-nine short-term features, they tested the 

system and obtained 92.71 % sensitivity and 88.58 % specificity.  

In [43], a dry and wet cough sound classifier has been designed with 178 cough events 

from 46 subjects. Features like bispectrum score, non-Gaussianity score (NGS), formants 

frequencies, log energy (LogE), kurtosis, and MFCC were used for classification. The 

system was implemented using logistic regression models and resulted in 72% specificities 

and 79% sensitivity.  

In [44], cough sound analysis has been designed for pneumonia and asthma classification 

using ANN for 18 patients with a total of 674 coughs (412 were from nine patients with 

pneumonia and 262 from nine patients with asthma). In this system, 22 features were 

computed (13 MFCCs, first five formant frequencies, zero-crossing rate, NGS, and 
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Shannon entropy). They used an ANN with 1 input layer with linear activation function, 2 

hidden layers with sigmoid activation function, and an output layer. They reported 88.9% 

of sensitivity and 100% specificity.  

In [45],  a cough analysis system has been developed to diagnose pertussis by analyzing 

cough signals using logistic regression. Features like MFCC, crest factor, maximum 

frequency, spectral roll-off, spectral kurtosis, spectral slope, band power, spectral flatness, 

the spectral standard deviation are extracted from 38 audio recordings and used to train and 

test the cough sound, detection model. The algorithm provided 92% accuracy. 

Automatic detection of TB has been designed to differentiate TB positive from healthy 

controls using cough sounds analysis, in [4]. The dataset was built from 17 TB-infected 

individuals and 21 healthy individuals. A total of 746 cough events were extracted and then 

used for logistic regression classifier training. Features such as log spectral energies and 

MFCC are used to develop models and reported Sensitivity of 95% and Specificity of 72%. 

Limitations of this work are data from patients with diseases similar to TB did not include, 

the only used classifier was logistic regression and other classifiers would not investigate, 

feature selection could not be used to lower the computational cost and the integration of 

the automatic cough annotation system and the cough classifiers could not be implemented.  

In, [46], a general framework for the analysis of cough sound includes automatic cough 

segmentation, extraction of features, and classification for different pulmonary diseases. 

For analysis, kurtosis, variance, and zero-crossing irregularity features were extracted. The 

dataset was constructed using voluntary cough data from 54 patients and 33 healthy 

individuals.  The model was trained using the dataset, and the accuracy was 81% for asthma 

vs. COPD, 74% for healthy control vs. unhealthy, and 80% for obstructive vs. non-

obstructive as calculated by the AUC of a ROC curve. 

2.3. Summary of Literature Review 

In digital signal processing, cough detection is a technique of separating cough events from 

other sounds, which is useful for obtaining data on the frequency and strength of cough 

and can provide valuable insight into the treatment of patients and the seriousness of the 
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disease. Cough classification is aimed at diagnosing particular diseases or disorders by 

analyzing cough sounds. Several studies were considered for each field (cough detection 

and cough classification), and their results and findings were reported. Some researches 

were limited to only cough detection or cough classification, they were not fully automated 

by integrating the two methods. The robustness of various recording environments whether 

the recordings were performed in a clinical setting in real-world conditions or the noise-

controlled environment were one issue of previous studies. Diversity of similar pulmonary 

diseases in the datasets for classification and attention for TB were also issued (investigated 

or not explored) in previous studies. Table 2.3-1 Summarize some similar studies, with the 

tick symbol (✓) indicating that the study meets the criteria and the cross symbol (X) 

indicating the study's limitations. 

Table 2.3-1. Summary of the related works. 

Autor Automatic 

Cough 

detection 

Cough 

classification 

Diversity of 

diseases 

(more than 3) 

Real cough 

sound in noisy 

environments 

For TB 

diagnosis 

Brian et al. [31] ✓ X X ✓ ✓ 

Martinek et al [33] ✓ X X ✓ X 

Birring et al. [35] ✓ X ✓ X X 

Pramono et al [36] ✓ X ✓ X X 

Kadambi et al. [37] ✓ X ✓ ✓ X 

Monge et al. [40] ✓ X X ✓ X 

Khomsay et al [41] ✓ X X X X 

Alvarez et al. [42] ✓ X X ✓ X 

Swarnkar et al [43] X ✓ ✓ X X 

Amrulloh et al [44] X ✓ X X X 

Pramono et al [45] ✓ ✓ ✓ X X 

Botha et al. [4] X ✓ X X ✓ 

This work ✓ ✓ ✓ ✓ ✓ 
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According to the table, there are efforts in the use of cough sound for the diagnosis of 

pulmonary diseases. However, using cough classification for TB diagnosis has yet to 

experience attention. The robustness of various recording devices, as well as the ability to 

discriminate TB cough from other lung diseases cough, were not explored. It requires 

focusing on fully automating and integrating the two methods of cough sound detection 

and cough classification. By building robust cough datasets, feature engineering efforts, 

and investigating and selecting the best classifier models used in this cough analysis field, 

this study would cover the gap in the robustness of the preceding works.
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Chapter 3 

Data Collection and Preparation of Datasets 

This chapter describes the data collection, the materials used for data collection, and the 

preparation of datasets for this research. The data were collected by using three different 

recording devices. All Cough events and other non-cough events were manually segmented 

from the audio recordings. To the best of my knowledge, standard cough sound datasets 

are still not publicly available. Then the prepared datasets were for both cough detection 

and cough classification models. 

3.1. Data Collection  

The recordings of sound data (both cough and non-cough sound) were collected from 

January 2020 to March 2020 from Bahir Dar Felege Hiwot compressive specialized 

hospital. The collected data is only sound recordings (cough and non-cough events) from 

patients who have a cough. Table 3.1-1 shows several patients with coughs due to different 

respiratory diseases, that are included in this data collection. The recording data were 

collected from patients after their cases are identified by the medical experts (shown in 

Appendix A). The case of the patients was identified using clinical diagnoses such as 

sputum culture, complete blood count (CBC), GeneXpert, erythrocyte sedimentation rate 

test (ESR test), chest x-ray, computed tomography scan (CT scan), and Bronchoscopy.  

Table 3.1-1. The number of patients who participated in this data collection with their 

cases. 

 Case Number of patients 

1 TB 15 

2 Pneumonia 38 

3 B. Asthma 4 

4 Bronchiectasis 6 

5 Obstructive airway disease, Pleural effusion, Rt lung mass, URTI, 

Cardiomegaly, Lung Cancer, Allergic rhinitis, and Interstitial 

lung disease (ILD) 

1 each 
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The cough data were obtained from seventy-one (71) volunteers suffering from cough due 

to respiratory disease, from the total recordings 15 records are from patients with TB. These 

cough sounds were labeled as TB cough, pneumonia cough, etc. on the grounds of their 

clinical findings. For the training and testing processes of the learning models, these labels 

were used.  From each patient, more than five cough events were recorded within 6-25 

minutes. All cough data and multiple non-cough events were collected from the adult ward.  

All cough data were recorded within the room shown in Figure 3.1-1, at Felege Hiwot 

Compressive Specialized Hospital. 

 

Figure 3.1-1. Recording setup at the hospital 

All the subjects (patients) who satisfied the inclusion criteria involved in the cough 

recordings were given informed consent (shown in Appendix B). Inclusion criteria 

are patients with known respiratory tract infections having cough, and willing to fill 

out the written consent form. But patients having droplet precautions, who are in 

critical conditions and unwilling to fill written consent forms were excluded. 

3.2. Materials Used for Data collection. 

Sound recordings were collected using three different recorders, a Philips VoiceTracer 

Digital Voice Handheld Recorder, an HM 1000 microphone, and an Infinix Hot 8 

smartphone shown below in Figure 3.2-1(a), (b), and (c) respectively.    
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Figure 3.2-1. (a) Handheld Recorder, (b) HM microphone, (c) Infinix smartphone. 

A Philips VoiceTracer Digital Voice Handheld Recorder: is a small device recording audio 

of any kind and more advanced types of built-in microphones.  HM, 1000 microphone is 

used to record sounds, it provides a 10m cable. The Infinix Hot 8 smartphone was used for 

sound recording in addition to handheld and HM1000 recorders.  

The reason why these three recorder systems are used is to build a robust system for various 

recording devices. There had been variations in the recording instruments, noise levels, and 

sampling frequencies, associated with each recording, as the recordings were collected 

using three different recording devices. Recordings were performed with a resolution of 16 

bits per sample, a sampling rate of 44.1kHz, which is CD standard [47]. The microphone 

was angled straight to the patient mouth and held 30-50 cm away from the mouth and the 

handheld recorder and the phone were set on the table when recordings were performed. 

There was some unwanted speech noise originated from outside the room, at the time of 

recordings. 

3.3. Preparation of Datasets 

The sound database consisted of cough and non-cough events collected from 71 patients. 

The dataset contains a rich variety of different pulmonary disease coughs such as TB 

coughs, pneumonia coughs, asthma coughs, etc. The non-cough events contain many sounds 

easily confused with coughing such as throat clearing, sneezing, laughing, and other 
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sounds. To construct the dataset for which the automatic cough detector and classifier were 

trained, manual sound event extraction was performed from the recordings. 

Each recording was loaded into Audacity software and, listening to the audio, and detected 

the cough events and extracted each cough event with 16 bits per sample and a sampling 

rate of 44.1kHz. Figure 3.3-1 shows a raw recording of a patient recorded using an HM 

1000 microphone.   

 

Figure 3.3-1 The waveform of a raw recording of a patient. 

Cough events were manually marked and segmented in each recording by listening to the 

events carefully and concurrently looking at the waveform shown on the screen on 

Audacity. The selected segments in Figure 3.3-1 indicate a coughing event that can be 

extracted as a single cough event. Figure 3.3-2 shows a single cough event (only the 

selected segments in Figure 3.3-1) waveform after being listened to extract as a single 

(.wav) file format.  
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Figure 3.3-2. A cough event sample. 

All sound events in this dataset were extracted in this way, and have a length of one or less 

than one second. A total of 6476 sound events are represented in this cough detection 

dataset (CDD), among them 3238 events were labeled as cough sounds and 3238 were non-

cough events. This CDD was used for training and testing for the cough detection 

algorithm.  A total of 3238 sound events are represented in the cough classification dataset 

(CCD), among them 1080 cough events were labeled as TB cough sounds and 2158 were 

non-TB cough events. The CCD was used for training and testing for the cough 

classification algorithm. Represented within these cough events are robust data, which is a 

multitude of different pulmonary diseases recorded by a microphone, handheld recorder, 

and phone. One aim of this research is to develop a robust system for various recording 

devices and different cases of pulmonary disease.  

Multiple non-cough events were extracted from the collected recordings. But some non-

cough sound files which could not record during data collection time on the hospital were 

also collected from the public universal-soundbank. Table 3.3-1 shows the composition of 

cough events with three recorders (microphone, portable recorder, and phone) and different 

pulmonary diseases. 
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Table 3.3-1. Composition of the cough data. 

 

Cases 

 

No. of 

Patient 

 Cough events were recorded using  

Total Microphone Hand-held 

recorder 

Phone 

Pneumonia 38 444 436 444 1346 

TB 15 374 366 374 1080 

B. Asthma 4 63 68 68 199 

Bronchiectasis 6 59 60 61 180 

Obstructive airway 

disease 

1 0 13 13 26 

Plural effusion 1 20 20 20 60 

Rt lung mass 1 10 10 10 30 

URTI  1 19 19 19 57 

ILD 1 15 15 15 45 

Cardiomegaly 1 23 20 22 65 

Lung Cancer 1 40 40 40 120 

Allergic rhinitis 1 15 0 15 30 

Total cough sound events 3238 

Total non-cough sound 

events 

3238 

Total sound events in 

the dataset 

6476 

Represented within these non-cough events are a multitude of other audio sources such as 

speech, ceiling fan, footsteps, sounds from the outside environment (ambulance), sounds 

of closing the doors, sounds typical for walking, motor vehicles, laughter, sounds as the 

mobile device moved about, recording office sound effects, free tools recording effects and 

the phone ringing, and other types of background sounds. The silence is removed at the 

preprocessing stage, and it is not counted as either a cough or a non-cough event. All cough 

sound events and other non-cough sounds in these datasets are audible. 

All data collects were approved by Felege Hiwot Compressive Specialized Hospital Out-

Patient Department. The ethical clearance for this dataset is shown in Appendix C.



  

25 

 

Chapter 4 

Cough Detection and Classification Methods 

This chapter discusses the proposed method for robust cough detection and classification. This 

thesis aims to develop a robust cough analysis method for different types of recorders in a 

moderately noisy environment and different lung diseases.  It focuses on robust feature 

extraction for differentiating cough sounds from non-cough sounds within recordings, and 

then classifying coughs as TB cough or non-TB cough. This was accomplished through 

pre-processing and feature engineering efforts. The remaining of this chapter is organized 

as follows: The method for cough detection is explained in section 4.1 and the cough 

classification of the proposed algorithms is presented in section 4.2.  

This automatic cough detection and classification method have two major steps. The first 

is cough detection, which involves separating cough events from non-cough sounds in a 

recording by removing undesirable signals via pre-processing and then extracting features 

for classifiers. The second stage is cough classification, which extracts discriminative 

features for classifiers to classify the detected cough events in the first step as TB cough or 

non-TB cough. A general overview of the proposed system is shown in Figure 4-1. 

 

Figure 4-1.  Automatic cough detection and classification system overview 
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4.1. Cough Detection Method 

Cough detection is a technique of separating cough events from other sounds. Manual 

cough detection by listing each recording is very time-consuming. The sound events in 

CDD were used to train the learning models, which were then used to detect cough 

automatically, from the newly recorded data. The cough segment detected by the model 

can then be used as the expected input for subsequent cough classifiers.  Before performing 

the feature extraction, the sound signals were pre-processed, then detection was performed 

using those extracted features. The cough detector learning algorithms' efficiency depends 

on both how well the features are extracted and how well the sound signals are pre-

processed. The general workflow for automatic cough detection is displayed in Figure 4.1-

1.  

 

Figure 4.1-1. The general workflow for automatic cough detection. 

The first step aims at removing background noise and silence within the recordings. 

Normalization and filtering were performed on the audio recording and then segmenting 

each recording into short events and features were extracted for each sound event. Finally, 

with those extracted features, the learning models training, and testing were performed.  

The outcome of each step is highly dependent on the previous steps. To enhance the 
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system's robustness capacity to identify cough events, each processing step was 

investigated and improved.  

4.1.1. Background Noise and Silence Removal  

At clinics, when coughing sound was recorded, there were moderate levels of background 

noise obtained from the process of data collection, and unwanted silence was recorded. 

Equation 4.1 below models the discrete-time audio recordings with their components, 

which are used to demonstrate the changes after pre-processing. 

𝑥[𝑛] = 𝑥𝑎[𝑛] + 𝑥𝑏𝑛[𝑛] + 𝑥𝑠[𝑛]                                        (4.1) 

where 𝑥[𝑛] is the audio recording, 𝑥𝑎[𝑛] are the audio components (cough sound and non-

cough sound), 𝑥𝑏𝑛[𝑛] represents the background, and  𝑥𝑠[𝑛] is the silence. 

To suppress the background noise 𝑥𝑏𝑛[𝑛]  from 𝑥[𝑛], a Butterworth bandpass filter was 

used to pass frequencies within a range. The Butterworth filter is a flat band filter at most, 

and the passband or stopband does not have a ripple. It has a wide region of transition from 

passband to stopband, and the response of frequency, group delay, the impulse response is 

much better and more practical than other filters [48]. This Butterworth filter was 

implemented to reduce the low-frequency noise such as noise coming from the vibration 

of microphone stands and high-frequency noise mostly Gaussian noises. It has a low and 

high cut-off frequency of  𝐿𝑓𝑐 = 20𝐻𝑧 and of 𝐻𝑓𝑐 = 20𝑘𝐻𝑧 respectively, which is the 

lower and upper boundaries of human hearing. Figure 4.1-2 shows the effect of Butterworth 

filters on the raw recording audio signal to suppress the background noise component. 
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Figure 4.1-2. Audio recording before and after a Butterworth bandpass filter. 

After eliminating the background noise using the Butterworth bandpass, the estimated 

audio recording 𝑥𝑒[𝑛] of the audio recording 𝑥[𝑛] is given below in equation 4.2. 

𝑥𝑒[𝑛] = 𝑥𝑒𝑎[𝑛] + 𝑥𝑒𝑠[𝑛]                                        (4.2) 

where 𝑥𝑒𝑎[𝑛] is the estimates of is the audio components (cough sound and non-cough 

sound), and  𝑥𝑒𝑠[𝑛] is the estimate of silence. 

The next step is removing silence 𝑥𝑒𝑠[𝑛]   from the estimated audio recording 𝑥𝑒[𝑛]. The 

removal of silence focuses on the detection of frames that do not contain sound events 

relative to cough events or other non-cough events. Different methods are used to identify 

and remove the silence. The audio recordings are conducted at clinics and have moderate 

levels of noise, so this issue must be resolved by the silence removal process. The standard 

deviation was used to solve this problem since it is the effective method of silence removal 

for performing under moderate noisy conditions [49].  
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4.1.1.1. Standard Deviation 

Standard deviation (𝜎) is a measure used to quantify a signal's variance or dispersion [49]. 

It is the square root of variance by evaluating the variation of each data point (amplitude 

value) relative to the mean. The standard deviation of audio recording is calculated as 

follows:  

1. The first step is to split the audio recording into several short frames. 

2. The mean (µ𝑖)  of a frame (equation 4.3) is determined by summing all the data 

points and dividing them by the total number (N) of points in a frame. 

µ𝑖 =
∑ 𝑥𝑒𝑛  

𝑁
𝑛=1

𝑁
                                        (4.3)             

Where, 𝑥𝑒𝑛 the data points of estimate frames of audio recording and N is the 

number of data points in a frame. 

3. The variance (𝜎𝑖
2) for each data point of a frame 𝑖 is calculated using equation 4.4, 

by subtracting the mean (µ𝑖) from each data point. Then, each of the resulting values 

is squared and the results are summed up and divided by the number of points minus 

one.  

𝜎𝑖
2 =

∑ |𝑥𝑒𝑖 (𝑘) − µ𝑖|2𝑊
𝑘=1

W − 1
                                        (4.4)             

Where, 𝑥𝑒𝑖 (𝑘) are the estimated frames of audio recording, W is the window size, 

i is the current frame, and k is the current sample. 

4. By square rooting the variance resulting in number 3, the standard deviation is 

obtained. 

There is a higher variance within a recording if the data points are further from the mean.  

For each audio recordings, the audio event and silence were determined using a threshold 

(T) value as shown in equation 4.5.  

𝑇 = 𝜇(𝑚𝑖𝑛𝜎) + σ(𝑚𝑖𝑛𝜎)                                               (4.5)             
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A higher standard deviation refers to audio bursts and a lower standard deviation would be 

correlated with silence. The raw audio, standard deviation, and measured threshold for a 

given audio recording are presented in Figure 4.1-3.   

 

Figure 4.1-3. Estimated audio signal, with SD of the frames. 

The SD of sound events is higher than the SD of silence, as shown in Figure 4.1-3. The 

sound events are identified as time regions where the SD reaches a specified threshold 

value of equation 4.5. 

4.1.2. Amplitude Normalization 

Audio recordings have variations in waveform amplitudes due to patients sitting at various 

distances from the recorders, different recording devices, or the naturally different sound 

loudness of the patients. Audio normalization can compensate for those differences by 

boosting the sound to a target level by altering the overall audio recordings by the same 

amount, without clipping and distorting the peak. For each sound recording event, the 

normalization was performed as follow: 

1. Split the sound event into non-overlapping frames.  



  

31 

 

2. Compute the energy of each frame. It can be calculated by:  

𝐸(𝑖) =
1

N
∑|𝑥𝑖 (𝑛)|2

𝑁

𝑛=1

                                               (4.6)             

Where N is the length of the frame, i is the current frame, and n is the current 

sample. 

3. Find maximum standard deviation (𝜎𝑚𝑎𝑥) of all event energy frames and the 

energy standard deviation (𝜎𝑒𝑛𝑒𝑟𝑔𝑦) of each frame. 

4. Calculate the ratio 𝑟 =
𝜎𝑒𝑛𝑒𝑟𝑔𝑦

𝜎𝑚𝑎𝑥
   for all samples and multiply all samples with the 

mean. 

5. The waveform has been scaled such that the energy of the events among sound 

events is normalized.  

4.1.3. Pre-emphasis and Segmentation 

A pre-emphasis is used to amplify the magnitude of higher-frequencies components of the 

sound events, to enhance the Signal to Noise Ratio (SNR). Pre-emphasis reduces the 

adverse effects of events such as recording device distortion in subsequent parts of the 

environment and flattens the spectrum. At this stage, equation 4.7 was used on sound events 

to enhance SNR with a  𝜀 = 0.96  which is the cut-off standard for the pre-emphasis [50]. 

𝑥𝑖[𝑛] = 𝑥𝑖[𝑛] − 𝜀𝑥𝑖[𝑛 − 1]                                        (4.7) 

This process (pre-emphasis) increases the energy of sound signals at a higher frequency 

and gives more information. After preprocessing, the next step was to segment the filtered 

sound events into a 100ms-size non-overlapping block. The energy of each segment was 

computed after segmentation, and a segment with a pick value was selected. To reduce the 

computational complexity of processing all segments of a sound event, it is possible to 

represent a sound event with a pick-value segment. Then, for further processing of the 

feature extraction, this pick-value segment of a sound event was used. 
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4.1.4. Feature Extraction 

Feature extraction is about extracting information from the segmented sound event for 

reducing the dimensionality for the detection and classification model.  It is a technique of 

feature engineering to derive relevant features from sound events. In sound signal analysis, 

feature engineering is a central task that is the process of converting raw sound events into 

features that better represent the underlying problem to enhance the accuracy of machine 

learning or deep learning model on unseen data. The innovative aspect of feature 

engineering is to find ways to develop the model by extracting different unique features 

used to discriminate cough events from other non-cough events and further classification 

of coughs. It helps the algorithms to understand data and decide patterns that can enhance 

the learning algorithms' efficiency. Much of the effectiveness of machine learning is the 

success of the feature engineering process that a learning model can comprehend [51]. 

Figure 4.1-4, is a feature engineering block diagram that converts inputs into features that 

can be understood by the learning algorithm. 

 

Figure 4.1-4. Block diagram of feature engineering 

The aim of feature extraction is not only dimensionality reduction, but also extracting 

unique features present in the cough events, as well as to reduce the risk of overfitting, 

speeding up training, and reducing the complexity of computations.  

There are a variety of sound features in the literature aimed at the identification and 

classification of cough signals. Several techniques are used for this process, two of the 

most are Linear Predictive Cepstral Coefficients (LPCC) and MFCC. The LPCC models 

the vocal tract correspond to the articulatory system of humans and the sound signal is 

modeled as a linear combination of its previous and current input [52]. The MFCC uses a 

spectral decomposition to break down sound signals into a non-linear distribution that 
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mimics a biologically-inspired human auditory system response to sound [53]. Both of 

these (LPC and MFCC) approaches reduce the complexity of sound signals. In this paper, 

MFCC was used, because it is the prominent and more robust feature in cough signal 

processing [40] [53] and it gives consistent and robust results to noise because it is based 

on human perception of hearing [54].  

4.1.4.1. Mel Frequency Cepstral Coefficients  

MFCCs are typical features used in cough signal analysis, which represent the short-term 

spectral of audio based on the human hearing mechanism [55]. In nature, cough sounds are 

complex signals, indicating that the respiratory tract (system) carries essential information 

and provides the tract with cough sound from its substructure [39].  MFCC produces a 

sound signal representation, varying from other cepstral features (e.g., LPCC) is it use the 

Mel-scale in the frequency bands. In MFCC the bands are arranged logarithmically, which 

mimic the human hearing mechanism. The efficacy of MFCCs is their ability to efficiently 

represent the significant part of the vocal tract (shape of the vocal tract, which originates 

cough or non-cough sound) [4]. Figure 4.1-5 explains the concrete steps of the MFCC. 

 

Figure 4.1-5 MFCCs features calculation flow diagram 
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A. Framing 

In MFCC, the selected sound event is split into frames of short length. A spectral-domain 

analysis (e.g., Fourier transform) yields good results for stationary signals, but not for non-

stationary signals. Cough sound signals are volatile and have non-stationary characteristics, 

so computing a single Fourier transformation to the entire cough event or record is 

meaningless. But for the frame of short length, the properties of the cough signal are 

considered stationary, and thus spectral analysis can be applied to it [56].  For this reason, 

the spectral domain analysis is computed for successive frames of the sound signal. The 

frame duration is usually between 20-40ms. Each frame was overlaid on the front frame to 

smooth the transition by accounts frames at window edges and provide equal weight 

between frames.  

B. Windowing  

The next step in the MFCC is to eliminate discontinuities or spectral leakage at the edges 

of the frames by windowing all frames. There are several window functions, but the 

hamming window is used to conduct windowing, which is better to eliminate spectral 

leakage [57]. Equation 4.8 is a Hamming window that is used at both edges of a frame to 

reduce spectral leakage. 

𝑤(𝑚) =  0.54 –  0.46 cos (
2𝜋𝑚

𝑁𝑚 − 1
)     0 ≤ 𝑚 ≤ 𝑁𝑚 − 1                            (4.8)             

Where, 𝑤(𝑚) is the window function, 𝑁𝑚 is the number of samples within each frame. 

Overlapping Hamming windows were used to eliminate the degraded events at the 

boundaries, which improves how well the MFCC can describe different sounds. Before the 

fast Fourier transform, the framed signals x(𝑚) were multiplied with the hamming 

function. The output signal after windowing is presented in equation 4.9. 

 y(𝑚) =  x(𝑚)𝑤(𝑚)      0 ≤ 𝑚 ≤ 𝑁𝑚 − 1                      (4.9)           
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Where, y(𝑚)is the output windowed signal, x(𝑚)is the input framed signal, w(𝑚)is the 

Hamming window shown in equation 4.9, and  𝑁𝑚 is the number of samples within each 

frame.   

C. Fast Fourier Transform 

The FFT is an algorithm that converts time-domain frames into the spectrum (frequency-

domain). FFT is an efficient method of discrete Fourier transform (DFT) since it can 

compute the N-element vector with 𝑂(𝑁 log 𝑁) the operation, but for the same vector, the 

DFT requires 𝑂(𝑁2) operation. The result of FFT is a spectrum or periodogram. FFT is 

widely used for sound analysis. The cochlea function can be considered to be identical to 

the Fourier transform, transforming raw sound vibrational waves into neural signals in the 

frequency domain. The frequency distribution of a sound should be assessed since the 

human ear exercises this skill in hearing [21]. 

D. Mel-Filter Banks 

In the FFT spectrum, the frequency range is wide and has a linear spectrum (follow a linear 

scale). But the frequency perception of the human ear follows a non-linear scale, which is 

linear up to 1000 Hz and logarithmic above. MFCCs use a non-linear frequency scale since 

it is the perception of human hearing [58]. The filter Bank of melody scale called Mel-

Scale, which describes the frequency perception of the human ear was used as a passband 

filter at this stage. The tone of the sound signal with a real frequency is measured in Hz, 

and the perceptual scale of pitches is measured on Mel-Scale. 

As mentioned above, the Mel-Scale is linear up to 1000 Hz and logarithmic above, so the 

following formula approximates each real linear frequency scale to the Mel-Scale. 

𝑓𝑚 = 2595 log10(1 +
𝑓

700⁄ )                                                (4.10)             

Where 𝑓 is the real frequency in Hz, and 𝑓𝑚 is the perceptual Mel-Scale frequency in a 

melody (Mel). 
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In MFCC processing, Mel-frequency warping is realized by triangular bandpass filter 

banks in the frequency domain.  The spectrum of signals (cough and non-cough sound 

segments) is passed through the Mel-filter banks, which spaced non-uniformly with Mel 

scale, then normally obtain the perceptual frequency, that can properly simulate auditory 

processing [59].  

E. Log   

After acquiring the Mel-spectrum, the next step is calculating the logarithm (log) of the 

squared magnitude or power spectrum of the output. The reason for this is that the dynamic 

range of amplitudes can be compressed by a logarithm. Since the response of the human 

ear to the sound signal level is logarithmic, it is less sensitive to small-amplitude 

differences. This makes the estimated frequency less sensitive to small amplitude changes 

due to the patient mouth being closer or far to the recorders. 

F. Discrete Cosine Transform (DCT) 

In this step, the DCT was carried out on the log Mel-spectrum to convert it back to the time 

domain, and the result is called MFCC. Cepstrum is the inverse Fourier transform of the 

spectrum. The DCT decorrelates the filter bank coefficients and generates a compressed 

representation of the log filter banks. Then, the DCT of the log Mel-scale of the power 

spectrum can be estimated by equation 4.11. 

𝑀𝑓𝐶𝐶𝑤 = ∑ 𝐿𝑀𝑠 cos [𝑤(𝑘 −
1

2
)

𝜋

𝐾
]

𝐾

𝑘=1

,    𝑤 = 1,2, . . . . . . 𝑊                                      (4.11)        

Where, 𝑊 is the required number of MFCC coefficients, 𝐿𝑀𝑠 is log Mel-scale of the power 

spectrum, and K is the number of filters.  

Typically, for cough sound analysis the first 13 coefficients are retained for each window 

and the rest are discarded. The set of 13 MFCC is called acoustic vectors. Therefore, each 

input sound signal is transformed into a sequence of MFCCs.  
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4.1.5. Cough Detection Learning Algorithms  

The cough detection phase was carried out after obtaining the feature vector, to 

discriminate cough sound events from no cough sound events. For cough detection and 

classification two popular and suitable algorithms in fields (ANN [32], [35], [38], [41] and 

SVM [31], [36], [37], [39]) were trained and tested to select the one with the highest 

numerical performance. The F1-score and accuracy were used as a metric to choose 

optimal models and compare results during optimization. 

4.1.5.1. Artificial Neural Network  

The ANN operated using an algorithm to interpret nonlinear data which is independent of 

sequential patterns. The ANN consists of neurons, organized into input, hidden, and output 

layers between the input and the results, which act like biological neurons, and are learned 

through a technique of backpropagation [60]. The strength typically offered by ANN is its 

capability of extracting hidden linear and classified data in complex and high-dimensional 

data like cough datasets based on a supervised learning technique using non-linear decision 

boundaries [61]. Concerning activated functions, the input of ANN was transferred into the 

output, and the result of each neuron was multiplied by weights and added with biased 

values from the neurons of the preceding level.  

The learning models have hyper-parameters, that can influence the model's performance 

number of hidden layers and neurons used in each layer, for example, would be considered 

as hyperparameters while creating an ANN system. Overfitting can be avoided by 

optimizing model hyper parameters on a development set (selected from the training set). 

The hyper-parameters of a model were optimized using a brute force method called grid 

search to achieve the best results. Grid search is a method for training and validating the 

model for all possible hyper-parameter combinations. The procedure begins by separating 

the dataset into K equal sections, with the validation set being chosen from one of the K 

folds and the remaining K - 1 folds set as the training set. This was performed until all K 

folds have been tested, and the final evaluation metrics were calculated by averaging all K 

iterations.  



  

38 

 

The ANN structure consisted of a feed-forward network and all of the layers used the 

sigmoid transfer function to transform activation levels to output, and the approaches for 

this study were written in the MATLAB script.  

4.1.5.2. Support Vector Machines 

The SVM is a supervised machine learning algorithm for detecting and analyzing 

relationships. It operates by analyzing data sets using a set of parameters that are used to 

solve classification and regression problems. SVM determines the desired hyperplane for 

maximizing the distance between any two classes [62].  

The hyperplane is a decision boundary that aid in the classification of data into various 

classes based on its attributes. The number of features of the data determines the dimension 

of the hyperplane. When the data has two features, the hyperplane is a line; when the data 

has three features, the hyperplane becomes a plane (two-dimensional); when the number 

of features exceeds three, it becomes difficult to picture [62]. The position of the 

hyperplane is influenced by data points called support vectors that are closer to the 

hyperplane. SVM aims to find a plane with the greatest distance between support vectors 

referred to as the maximum margin distance, to both classes. Grid search was used to fine-

tune model parameters, and a radial-type kernel was selected to project the data, allowing 

for more complex class separation. 

4.2. Cough Classification  

The second phase of this study was classifying the cough events (coughs detected in section 

4.1) as TB disease and non-TB diseases. The method used to classify cough events as TB 

and non-TB diseases is extremely similar to the technique of cough detection described in 

this study in Section 4.1. There are two differences between the two methods. 

The first difference is the dataset used for training and testing the classifier model. The 

dataset used for the classifier model is the cough classifier dataset (CCD). The CCD 

contains only cough events collected from71 patients with various lung diseases. There are 
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3238 cough events in CCD, of which 1080 cough events were obtained from patients with 

TB and 2158 cough events were obtained from 12 other different pulmonary diseases.  

The second differences are at the stage of pre-processing and extraction of features. The 

input for the classifier (cough classification artificial neural network (CC-ANN) system is 

the pre-processed cough events obtained from the cough detection system, so no further 

pre-processing is required. The classifier model begins with the extraction of features from 

cough events, from those previously obtained in cough detection artificial neural network 

(CD-ANN). Both models (CD-ANN and CC-ANN) use MFCCs features, but the extraction 

process has changed slightly. Figure 4.2-1 demonstrates the general workflow for the 

automatic cough classification system. 

 

Figure 4.2-1. The general workflow for the cough classification (TB/non-TB). 

The MFCC features were extracted from the cough events obtained from the CD-ANN 

model. The process of extracting features is almost similar to the technique previously used 

in section 4.1.4. The differences are, in CC-ANN the frame length is 20ms instead of 40ms. 

The differences are relatively small, but they combine to make the classification neural 

network complex, which boosts the accuracy.
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Chapter 5 

Implementation Result and Discussion 

This chapter presented the results and discussion of this thesis work stage by stage, starting 

from the prepared input dataset to the final result. First, the robustness of the prepared 

dataset used in this study was compared to that of some related works. The results of 

various stages of pre-processing were then illustrated and discussed in section 5.2, along 

with their effect on the sound signal. Finally, in sections 5.3, to 5.6 the features used in 

cough detection and classification algorithms, as well as a comparison of the two models 

using various evaluation metrics, were discussed. 

5.1. The Dataset Preparation Result and Discussion 

The dataset (CDD and CCD) was used to train and test the models in this study. Using the 

technique presented in chapter 3 of this paper, 6476 sound events were labeled in the CDD 

and 3238 cough events were labeled in the CCD. The data summarized in Table 3.3-1 was 

obtained from multiple pulmonary patients in a clinical setting using three different 

recording devices in moderately noisy environments. This system is robust to differences 

in recording equipment, noise levels, and sampling frequencies associated with each 

recording because the sounds were recorded from patients with various lung diseases. The 

dataset was validated since it was manually segmented using a human scorer. Table 5.1-1 

compares the datasets used in this research to those used in some similar studies listed in 

Chapter 2. 

Table 5.1-1. Comparison of the dataset used in this thesis to the related works. 

Autor # Sound events 

in the dataset 

Number of 

patients 

Variety of 

diseases 

Botha et al. [4] 746 17 2 

Brian et al. [31] 620 62 2 

Martinek et al. [33] 1706 41 2 

Birring et al. [35] Not specified 15 7 

Pramono et al. [36] 1980 43 7 
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Kadambi et al. [37] 5670 9 4 

Monge et al. [40] 78 13 3 

Khomsay et al. [41] 810 8 2 

Alvarez et al. [42] 1648 13 3 

Swarnkar et al. [43] 178 46 4 

Amrulloh et al. [44] 674 18 2 

Pramono et al. [45] 1850 38 4 

This work 6476 71 12 

Since one of the goals of this study was to create a robust dataset and investigating learning 

models using it. The dataset used in this study is robust and comparable to the studies 

described in Chapter 2 as shown in table 5.1-1 in terms of dataset size, number of patients, 

diversity of diseases, and also diversity of recording devices. 

5.2. Result and Discussion on Pre-Processing Phases  

The sound signals were pre-processed to eliminate background noise before the features 

were extracted, and then detection and classification models were developed using the 

extracted features. The performance of the classifier models was determined by how well 

the sound signals were pre-processed as well as how well the features were extracted.  

The recording sound signal was passed through a bandpass Butterworth filter, as described 

in Section 4.1.1, with low and high cut-off frequencies of 20Hz and 20kHz, respectively, 

to minimize the background noise. As illustrated in Figure 4.1-2, the filter suppressed the 

low and high-frequency noise components of the signal and lies within a fixed boundary. 

The silence was removed from the recording using the SD method after the noise from 

audio recording signals was suppressed. Figure 5-2-1 shows the audio recording before and 

after the silence was removed. 
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Figure 5.2-1. Waveforms, before silence removal, and after silence removal.  

There was a higher variance within a recording if the data points were further from the 

mean. For each audio recordings, the audio event and silence were determined using a 

threshold (T) value using equation 4.5. A higher standard deviation refers to an audio event 

and a lower standard deviation would be correlated with silence. The audio recordings were 

conducted at clinics and have moderate levels of noise, so this issue was solved by the 

standard deviation silence removal method and it is an effective method for using in real-

time conditions.   

Waveform amplitudes in audio recordings varied due to patients sitting at different 

distances from the recorders, different recording devices, or the patients' naturally variable 
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sound loudness. Audio normalization adjusted for these variations by raising the sound to 

a target level by adjusting the entire audio recordings using the technique stated above in 

section 4.1.2. The waveform before and after normalization is illustrated in Figure 5 2 2. 

 

Figure 5.2-2. Sample waveform and its normalization result. 

The amplitude of the sound events has been normalized by different scaling factors based 

on its waveform variation. After normalization, a pre-emphasis was used to enhance the 

magnitude of the sound events' higher-frequency components. The filtered sound events 

were segmented into a 100ms non-overlapping block. After segmentation, the energy of 

each segment was calculated, and a segment with a pick value was chosen as shown in 

Figure 5.2-3.  
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Figure 5.2-3. Sample cough event and segmentation result. 

This segmentation process reduces the computational complexity of processing all 

segments of a sound event, it is possible to represent a sound event with a pick-value 

segment and feature extraction was performed on this segment. 

5.3. Results of Feature Extraction process 

For cough detection, a segment of each input sound event was split into frames of short 

length (40ms duration with 50% overlap), considering it as stationary signal and thus 

spectral analysis was applied to it. The 100ms segment in Figure 5.2-3 was split into 4 

overlapped frames. By taking into account discontinuities at window edges, the frame was 

overlaid to smooth the transition. 

The spectral leakages at the edges of the frames were eliminated by windowing all frames 

using hamming window. A framed signal, as shown in Figure 5.3-1 (b), was multiplied 

with the Hamming window shown in Figure 5.3-1(c) before the fast Fourier transform.  
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Figure 5.3-1. (a) Overlapped frames, (b) frame 2, (c) window, (d) windowed frame. 

Figure 5.3-1 (d) shows a framed signal after windowing, which reduces the effects of FFT 

leakage. FFT was calculated after windowing, and the time-domain frames were 

transformed to the spectrum (frequency-domain). The Fourier transform function is similar 

to that of the cochlea in the human ear. The function of the cochlea is to transform raw 

sound vibrational waves into frequency domain neural impulses. 

The frequency range in the Fourier spectrum was large and followed a linear scale, whereas 

the human ear's frequency perception follows a non-linear scale. The Mel-Scale filter Bank, 

which describes the frequency perception of the human ear was used as a passband filter 

at this stage. An example of Mel-scale filter banks is shown in Figure 5.3-2 (this is purely 
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for demonstration purposes; the spacing and number of filters are not similar to those used 

in this study due to the difficulty of visualizing and plotting them). 

 

Figure 5.3-2. Mel-scale triangular filter banks.  

The FFT spectrums of frames were passed through Mel-filter banks, which were spaced 

non-uniformly with Mel scale (equation 4.10), to obtain the perceptual frequency, which 

can accurately mimic auditory processing.  

The human ear is less sensitive to small-amplitude changes of sound, but the amplitude of 

the FFT result had a dynamic range. By calculating the logarithm of the spectrum, the 

dynamic range was compressed, making the estimated spectrum less responsive to small 

amplitude changes. Finally, the DCT was carried out on the log Mel-spectrum to convert 

it to cepstrum. The DCT decorrelates the filter bank coefficients and generates a 

compressed representation of the log filter banks. The set of 13 cepstrum coefficients 

(MFCCs) for each window were held for cough sound analysis. Table 5.3-1 displays the 

MFCCs of the cough event described in Figure 5.3-1 (a). 

Table 5.3-1. MFCCs of a sample cough event. 

Fra

mes 

MFCCs (MFCC1- MFCC13) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 
-8.14 -0.46 1.09 -0.33 -0.15 -0.51 -0.37 -0.03 -0.31 -0.65 -0.05 0.14 -0.05 

2 
-6.44 -1.34 0.61 -0.72 0.36 -0.51 -0.55 -0.19 -0.06 -0.56 -0.25 0.11 0.25 

3 
-7.40 -1.64 0.58 -0.62 0.44 0.20 -0.49 -0.22 -0.01 -0.42 -0.46 0.08 0.24 

4 
-7.88 -1.13 0.54 -0.14 0.23 0.16 -0.77 -0.56 0.06 -0.21 -0.41 0.06 -0.12 
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These MFCCs are used as features for the classifier models. A vector containing 4X13=52 

MFCC features was formed from the 100ms segment of every sound event. This feature 

vector was then supplied to a classifier for the cough detection system.  

The second phase of this study was classifying the detected cough event as TB disease and 

non-TB disease cough. The method used to classify cough events as TB and non-TB 

diseases used the CCD dataset and it was extremely similar to the technique of cough 

detection. The MFCC features were extracted from the cough events obtained from the 

cough detection system. For cough classification, a segment of each input sound event was 

split into 20ms frames with 50% overlap. The 100ms segment was split into nine 

overlapped frames because this parameter used above for cough detection has changed 

slightly. The modification enhances the effectiveness of classifier models for 

differentiating Tb coughs from other coughs, but it comes at the cost of increased 

computational complexity compared to the cough detection system. The 100ms segment 

of every (TB/non-TB) cough event was used to create a vector with 9X13=117 MFCC 

features. This feature vector was then fed into a cough classification system classifier. 

5.4. Hyper-parameters Optimization of the Models 

The hyper-parameters of ANN were optimized using a brute force method called grid 

search to achieve the best results. The number of hidden layers and the appropriate learning 

algorithms were selected by comparing their performance. The other hyper-parameters 

were adjusted or tuned using a variety of parameter combinations, and the validation 

method was k-fold cross-validation. The first main hyper-parameter for ANN was the 

number of hidden layers. The scoring method used during hidden layer optimization was 

root means square error. Figure 5-4.1 depicts the optimization surface for the number of 

hidden layers with their root means square error. The number of hidden layers was selected 

28 since it had the minimum root means square error value as shown in Figure 5.4-1. 
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Figure 5.4-1. The rmse value with the number of hidden layers. 

The second main hyper-parameter for ANN was the learning algorithm. Figure 5-4-2 shows 

the receiver operating characteristic (ROC) curve of different ANN learning algorithms. 

 

Figure 5.4-2. ROC of ANN learning algorithms for cough detection 
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Table 5.4-1 depicts the ANN learning algorithms with their accuracy for both cough 

detection and classification systems. 

Table 5.4-1. ANN learning algorithms with their accuracy. 

Systems  

Levenberg-

Marquardt (LM) 

 

Gradient 

Descent 

 

One Step 

Secant 

 

 

Resilient 

Backpropagation 

Cough Detection 98.2% 93.7% 96.2% 96.9% 

Cough Classification 92.3% 80.9% 88.0% 92.1% 

Levenberg-Marquardt's learning algorithm was selected for both cough detection and 

classification with high accuracy of 98.2% and 92.3% respectively. Because of its ability to 

solve difficult nonlinear problems, the Levenberg-Marquardt algorithm outperformed 

other algorithms.  It is a hybrid of Gauss-Newton and the gradient descent method; when 

the parameters are near to their optimal value, it acts more like the Gauss-Newton, and 

when they are far from their objective function, it works more like a gradient-descent.  

The other hyperparameter is epochs, which represent one complete pass of the data 

(training data) through the learning algorithm. Figure 5-3-4 depicts the optimization 

surface for the performance of the model with their number of epochs for the cough 

detection model. 

 

Figure 5.4-3. Performance with number of epochs for cough detection. 
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The best validation performance for cough detection was 0.028 at epoch 9 and the network 

was trained for 15 epochs. Similarly, figure 5-3-4 depicts the optimization surface for the 

performance of the model with their number of epochs for the cough classification model. 

 

Figure 5.4-4. Performance with the number of epochs for cough classification. 

The best validation performance for cough classification was 0.11367 at epoch 7 and the 

network was trained for 13 epochs.  

Grid search was also used to optimize the hyper-parameters of SVM. Obtaining the desired 

hyperplane (kernel) for optimizing the distance between any two classes is the key 

parameter for SVM. Table 5.4-2 lists the SVM kernel functions for cough detection and 

classification systems, along with their accuracy. 

Table 5.4-2. SVM kernel functions with their accuracy for both cough detection and 

classification system. 

Cough Systems  

Linear   

 

Radial Basis 

Function (RBF) 

 

Polynomial 

power 2 

 

Polynomial 

power 3 
Detection 86.9% 97.1% 91.7% 91.8% 

Classification 66.5% 89.4% 75.4% 75.4% 

The position of the hyperplane is influenced by data points called support vectors that are 

closer to the hyperplane. RBF kernel outperforms other kernels as shown in Table 5.4-2 
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due to its function space flexibility in projecting high-dimensional non-linear data. RBF 

kernel was selected for both cough detection and classification with high performance to 

project the data. 

5.5. Performance Comparison of the Selected ANN and SVM 

Models 

The accuracy and F1-score validation metrics were used to compare the performance of 

the two models (ANN and SVM with their selected optimal parameters). The accuracy 

(Equation 5.1) is calculated by dividing the total number of correct classifications by the 

total number of classifications.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                      (5.1)        

Where TP is True Positives, the number of positive samples in which the system classified 

as positive, TN is True Negatives, the number of negative samples in which the system is 

classified as negative, FP is False Positives, the number of positive samples in which the 

system classified as negative, and FN is False Negatives, the number of negative samples 

in which the system classified as positive. Accuracy is a simple metric, it is inadequate in 

certain situations, such as with unbalanced datasets, to evaluate a model's efficiency solely 

based on accuracy. As a result, F1-score was used to evaluate the models. The F1-score is 

a metric for determining the effectiveness of a classifier. It is the harmonic mean of 

precision and recall, in such a way that the lowest value is emphasized, the formula is: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                      (5.2)        

Where, precision (positive predictive value) is calculated by dividing the number of TP 

results by the total number of positive results, which includes those that were incorrectly 

classified and obtained using Equation 5.3, and recall (also called sensitivity) is the number 

of TP results divided by the number of all samples that classified as positive, which can be 

calculated using Equation 5.4. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                      (5.3)        

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                      (5.4)        

The F-1 score is a good indicator for classification problems on unbalanced datasets, and 

it's the metric to use when you're looking for a good balance of recall and precision  

Based on the ANN and SVM, the full dataset used in the current study has 6476 and 3238 

sound events for detection and classification respectively, from the datasets 70% were used 

for training, 15% were used for validation, and 15% were used for the test. The confusion 

matrix for cough detection ANN is displayed in Figure 5.5-1. 

 

Figure 5.5-1. The confusion matrix for cough detection ANN 

The accuracy and F1-score of the models were evaluated on overall sets. Table 5.3-1 shows 

the performance of cough detection and cough classification systems on overall sets for 

ANN and SVM classifiers. 
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Table 5.5-1. Overall accuracy and F1-score of the models. 

Models Cough Detection Cough Classification 

Accuracy F1-score Accuracy F1-score 

ANN 98.2% 98.1% 92.3% 87.7% 

SVM 97.1% 96.6% 89.4% 82.2% 

In both cough detection and cough classification, the two models, ANN and SVM, 

achieved acceptable accuracy and F1-score values. This indicates that MFCCs, which are 

based on perceptual models of the human auditory system, can uniquely represent sound 

signals using feature engineering effort. Due to its capacity to adjust the size of a network, 

the ANN outperforms SVM models in solving high dimensionality nonlinear problems. 

5.6. Comparison of the proposed method to a previous study 

Previously, the most similar study, automatic detection of tuberculosis was designed to 

distinguish TB positive from healthy controls using cough sounds analysis (Botha et al 

2018) [4].  The research gaps of the previous work done by Botha et al 2018, were one of 

the impetus for us for conducting this research. Both studies were conducted to diagnose 

TB using the cough sound of patients. Table 5.6-1 compares the methods used in this 

research to a previous study (Botha et al 2018). 

Table 5.6-1. Comparison of this study to the most closely related one. 

Comparison 

parameters 

Most similar research (Botha et 

al.2018) 

This work 

Datasets • Only data from TB patients and healthy 

individuals voluntary cough were collected, but 

data from patients with diseases similar to TB 

were not included. 

• It severely limits the classification robustness 

of various diseases. 

• The dataset contained 746 cough events 

collected from 17 tuberculosis patients and 21 

healthy individuals. 

• Collected cough data was the multitude of 

twelve different pulmonary diseases such as TB, 

pneumonia, B. Asthma, etc. 

• It is more robust in terms of disease 

classification. 

• The dataset contained 6476 sound events 

collected from 71 patients suffering from twelve 

different pulmonary diseases. 
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Recording 

Environment 

• Cough sounds were recorded in a specially 

designed facility under controlled 

environments. 

• There was no background noise, and the 

silences have a fixed level of energy. 

• Differ from realistic conditions. 

• Cough sounds were recorded in clinical settings 

in real-world environments. 

• There were background noises, and the silences 

had different levels of energy. 

• Similar to real-world conditions. 

Preprocessing 

and feature 

engineering 

efforts. 

• No need for preprocessing effort to remove 

background noise and silences. 

• Without any preprocessing, features were 

extracted directly from cough sounds. 

• It is difficult to apply in practical applications 

(real-world scenarios). 

• Before feature extraction, background noise was 

removed using preprocessing efforts. 

• The silences in the recordings were removed 

based on their energy standard deviation with the 

dynamic energy threshold value. 

• Designed for a real-world scenario. 

Fully 

automated  

• Only cough classification. 

• Humans manually detected and extract cough 

events among other non-cough sounds such as 

laughing, speech, throat clearing, etc. 

• Time-consuming, difficult to apply in practice, 

and requires additional effort. 

• Fully automated, have both cough detection and 

cough classification. 

• The system extracts cough events from the 

recordings and categorizes them as TB or non-

TB cough. 

• Simple and efficient to put into practice. 

Segmentation 

and feature 

• The MFCCs features were extracted from the 

entire cough event, with no segmentation. 

• Complex in terms of computation. 

• MFCCs features extraction were performed on 

the selected segment after segmentation 

• Effective in terms of computation 

Experimental 

Result 

• 82% accuracy for classification • 92.3% accuracy for classification 

We note that the methods we used in this study outperform previous work on all of the 

comparison parameters listed in table 5.6-1. The reason for this is that the goal of this 

research is to fill gaps in previous work. Even though the experiments were conducted 

under diverse circumstances (different datasets and feature engineering efforts), a 

comparison of the accuracy of the two studies in table 5.6-1 shows that the proposed work 

achieves better performance. This indicated that the robust pre-processing technique and 

feature engineering efforts used in this study are essential for developing cough diagnosis 

systems in real-world scenarios. We can consider the proposed methods in this study to be 

an advancement of previous work (Botha et al.2018). 

 

 



  

55 

 

Chapter 6 

Conclusion and Recommendation 

6.1. Conclusion 

The use of cough data obtained from patients with various pulmonary diseases and 

recorded using three different recorders in a clinical setting in a moderately noisy 

environment to develop a robust system for TB diagnosis was investigated in this study. 

The dataset utilized in this study was compared to data from other studies, and the data in 

this study is robust in terms of dataset size, the number of patients, disease diversity, and 

recording device diversity.  Audio signal processing was done to extract the robust MFCC 

features, which were achieved by pre-processing and feature engineering efforts. An ANN 

and SVM were used to create an automated cough detection and classification system, and 

the ANN with the best performance was selected. The ANN algorithms for cough detection 

achieved an accuracy of 98.2% and F1-score of 98.1%, and for TB/non-TB classification, 

an accuracy of 92.3% and an F1-score of 87.7%. This indicates that ANN is a better 

classifier for high-dimensional and non-linear complex data like cough sound 

classification. As a result, we can conclude that the system can differentiate between TB 

patients' coughs and coughs caused by other lung diseases that aren't audible by a human 

listener. This shows that using cough sound MFCCs features as a diagnostic tool for TB 

testing can be a viable solution. 

This research contributes to the advancement of automatic cough analysis methods for TB 

diagnosis. The dataset prepared in this study will be helpful for future research in this area. 

In the cough analysis areas, this study contributed by developing a robust automatic system 

for cough detection from continuous sound recordings, as well as a robust cough sound 

classification method for TB diagnosis. The development of a robust diagnostic system 

was aided by the use of various sound recorders to obtain the cough signal from patients 

with various pulmonary diseases in a moderately noisy environment. Signal preprocessing 

was performed well to compensate for the differences in data collected from various 

recorders and to remove noise from the recordings. Using feature engineering of sound 

signals, unique features of TB patients' coughs were extracted to differentiate them from 
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non-TB pulmonary patients. The integration of an automated cough detection system with 

a cough classification system was another achievement of this research. All of these efforts 

were made to develop a robust system and overcome the challenges of TB diagnosis in 

resource-constrained environments.  

Finally, this study investigates that cough sound analysis can be used to diagnose 

tuberculosis. However, before putting the proposed approach into practice, it is important 

to note that the promising outcomes of this research should be followed up with further 

research. 

6.2.  Future Development 

To advance this research, the dataset must first be analyzed and given attention. Even if 

the dataset used in this research was robust and comparable to those used in previous 

similar studies, the development of the best reliable database remains a priority. A 

comprehensive dataset could be built by increasing the dataset's size, including coughs 

from patients with other lung diseases such as Coronavirus (COVID-19), including data 

from pediatric patients, and collecting sound recordings from various settings.  

In some clinics, the cough recording space is too small, resulting in echo, an echo 

cancellation algorithm from recordings would be useful to improve the cough processing 

algorithm. More research should be conducted in the future to resolve these issues, and the 

method should be developed into a smartphone application.
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