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ABSTRACT 

Hydrological data inadequacy at ungauged watersheds has been a problem for 

modeling  the  water  resources  of  Omo-Gibe  Basin,  Ethiopia.  Climate  Forecast  and 

System Reanalysis (CFSR) Satellite climate products can be utilized as an alternative 

source of climate data in such regions where the usual ground observed climate data 

are  insufficient.  Therefore,  the  aim  of  this  study  was  to  evaluate  the  hydrological 

performance of CFSR weather data as an input to the HBV-Light hydrological model 

over  the  Omo-Gibe  River  Basin,  Ethiopia.  The  evaluation  was  executed  in  three 

different steps. Initially, the CFSR data was compared to ground climate data using 

efficiency descriptors (ENS, 𝑅2 , PBIAS) and categorical statistics (Probability of 

Detection and False Alarm Ratio) for the same time window of 1987 to 2010. Secondly, 

the  runoff  predictive  performance  of  the  CFSR  driven  HBV  -Light  model  was 

calibrated and validated at gauged catchments. Finally, streamflow was generated at 

ungauged catchments through the method of regionalization. The soil descriptors (Soil 

permeability, Soil available water content, Soil bulk density), vegetation descriptors 

(NDVI) and topographical descriptors were some of the data used in this study. Prior 

to the regionalization, Principal component analysis (PCA) was carried out on physical 

catchment characteristics (PCCs) to improve the regression model between the model 

parameters and PCCs. The result of direct comparison revealed that CFSR correlated 

to ground observed rainfall data at catchments with an efficiency of (R ², NSE ≥  0.7) 

except  for  Walga,  Wabe,  Gorombo,  and  Sokie-Weybo  where  CFSR  have  shown 

reasonable efficiency with an acceptable bias of 10%, 8%,   𝑎𝑛𝑑  − 11%.   However, 

the CFSR efficiency was increased after bias correction applying the linear scaling bias 

correction method. CFSR data-driven rainfall-runoff model has shown a good 

performance  (R²,  NSE ≥   0.7)  in  simulating  the  observed  flow  at  well-recorded 

catchments. The performance of the regional model verified in the validation 

catchments was found satisfactory and recommended to be modified introducing any 

dataset not included in this study like anthropogenic activities, geological and mining 

data.  

Keywords/phrases; CFSR, HBV-light, Regionalization, Ungauged catchments, Omo-

Gibe 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Climate data is the most critical parameter for watershed modeling in the water cycle, 

improving  the  short  term,  medium,  and  long-term  weather  forecasts,  and  climate 

monitoring.  Effective  planning  and  utilization  of  water  resources  require  sufficient 

climate data, but these data are usually obtained from rain-gauge stations  of in situ 

monitoring  systems  which  are  expensive  to  preserve  in  Africa  due  to  complex 

topography, economy, and deserters as the measurement of precipitation are difficult 

in areas with poor road networks (Pombo & de Oliveira, 2015).  

A  typical  difficulty  in  modeling  watershed  hydrology  is  obtaining  accurate  climate 

input data, as the network of observation stations for rainfall is sparse and unevenly 

distributed in developing countries. Land-based climate stations do not always 

adequately represent the weather occurring over a watershed, because they can be far 

from the watershed of interest and can have gaps in their data series, or recent data are 

not available (Fuka et al., 2013). Rainfall data is a crucial resource in many socio-

economic  activities,  particularly  for  those  African  countries  which  are  prevalently 

dependent  on  the  rainfed  agriculture  that  took  care  of  agribusiness  (Worqlul  et  al., 

2015). 

Recent  advances  in  multi-satellite  rainfall  estimates  have  allowed  the  use  of  high-

resolution satellite rainfall products in hydrological modeling for runoff simulations 

and predictions. Those high-resolution satellite climate data are sufficiently available 

and  attracting  the  hydrologists'  attention  especially  in  developing  countries  where 

climate radars are missing and routine meteorological stations are inadequate with 

short time duration data (Bitew & Gebremichael, 2011). 

By contributing 90% of the runoff to lake Turkana (located downstream in Kenya), 

Omo-Gibe River Basin is the second largest river system in Ethiopia (Jillo et al., 2017). 

However, representative hydrometeorological data in such a large basin of river system 

for hydrological  modeling has been  an active problem  to the limited availability of 

insitu  observation  stations.  The  high-resolution  globally  available  CFSR  weather 

forecasts blended with ground meteorological data have the potential to overcome the 

above-mentioned problem.  



 

14 
 

Climate Forecast System Reanalysis (CFSR) is the new dataset freely downloadable 

from the National Center of Environmental Prediction (NCEP) and currently covers 

from 1979 to the present, at a horizontal resolution of approximately (38 km) with 64 

vertical layers. CFSR data are planned, accomplished, and released as worldwide high-

resolution joining atmosphere-ocean-land surface-sea ice structure to supply the most 

excellent gauge of  the  state  of  these  coupled spaces and all-inclusive accessible for 

each hour. Results showed that utilizing the CFSR precipitation to force a watershed 

model provides stream discharge simulations that are better than models forced using 

traditional weather gauging stations. 

The harmonious application of these data sets would help us to (a) input precipitation 

and temperature and vegetation information into a hydrological model and calculate 

the soil moisture and surface evapotranspiration using the water and energy balance 

equations (b) the measured soil moisture and surface temperature can be used in two 

ways (i) to calibrate certain model parameters (ii) to verify the output of the model 

through validation (Fuka et al., 2013). 

Even though Satellite Rainfall Products are serving as a substitution for scarce climate 

data, they are sometimes subjected to a variety of potential errors, which originate from 

the discontinuous revisit time of observing sensors and weak relationships between 

remotely  sensed  signals  and  rainfall  rate.  Recent  Researchers  Habib  et  al.(2012), 

Shrestha et al.(2017) indicated that satellite-based rainfall estimates are sometimes not 

reliable and consensus as the estimates require correction. Orographic rainfall is one of 

the common rainfall types in the study basin and happens due to cloud formation at the 

mountain  face  with  the  lifting  of  moist  carrying  wind  and  air  mass  blowing  from 

waterbodies.  According  to  Dinku  et  al.  (2008),  this  orographic  cloud  may  lead  to 

precipitation while the cloud top is still relatively warm and may not be detected by the 

satellite sensors. Hence  to certify a justified utilization of Satellite Rainfall Product 

(SRP) a systematic validation is required before using for hydrological modeling. There 

are two methods for validating SRP: either by comparing to ground observed rain gauge 

data, or through hydrological modeling using the satellite data as an input ( Worqlul et 

al., 2014). 

Therefore, the purpose of this study was to evaluate the performance of CFSR data in 

three ways: Frist, direct comparison of areal average CFSR data to its areal average 

observed rainfall of each catchment in the basin. Second, evaluation of CFSR through 

hydrological  modeling  using  HBV-Light  model  at  the  gauged  catchments,  thirdly, 
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prediction of flow at ungauged catchments and so as to fill the gap of data scarcity in 

Omo-Gibe River Basin, Ethiopia.  

1.2 Statement of the Problem 

Ethiopia is a large country and known to be a water tower of East Africa but most River 

Basins have less coverage of hydro-meteorological gauging stations. Omo-Gibe River 

Basin is one of those basins with ungauged sub-watersheds at its north western and 

southern parts. 

In Omo-Gibe River Basin, the ground observed hydrometeorological gauging stations 

are  poorly  recorded  and  long-time  data  from  only  a  few  well-documented  weather 

observations have constrained efficient planning and management of water resources 

and hampers early flood warning properly as they are rare and even nonexistent. As 

there is no complete information of inflow from each catchment and total outflow from 

the basin together with uneven spatial and temporal distribution of climate variables 

also  a  problem  for  modeling  water  resources  in  the  Basin.  However,  the  basin  has 

significant economic, social, and ecological importance within and neighboring 

countries.   

World  meteorological  observation  (WMO,  2003)  reported  that  African  rain-gauge 

density is 8 times lower than (WMO) recommendation. The Omo-Gibe River Basin is 

also  rich  in  multipurpose  water  resources  development  raising  the  economy  of  the 

country such as cascade hydropower plants. These plants are continuously supplied by 

the rivers at upstream subsequent watersheds along with V-shaped valley reaches and 

suitable topographies.  

However,  In  the  lower  Omo-Gibe  Basin,  the  non-existent  of  hydro-meteorological 

stations has initiated to search for another alternative source of data for sustainable use 

of  these  water  resources  in  the  basin.  The  general  lack  of  in  situ  precipitation 

measurements in the southern part of study area necessitated the use of CFSR data, 

modeling  the  hydrology  and  its  features  using  satellite-generated  climate  data  as  a 

meteorological  data  gap  filling  after  evaluating  its  hydrological  performance.  This 

study was thus intended to in depth evaluation of CFSR data starting from pair wise 

comparisons, to hydrological modeling through stream flow simulation.  
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Therefore, the main objective of this study was aimed to evaluate the Climate Forecast 

and  System  Reanalysis  (CFSR)  for  use  as  an  input  in  HBV  -Light  hydrological 

modeling in the catchments of the Omo-Gibe River Basin, Ethiopia.  

1.3 The objective of the research 

1.3.1 General objective 

The main objective of this study was to compare CFSR data and climate data ground 

observed rainfall data for flow prediction inungauged watersheds of Omo-Gibe River 

Basin, Ethiopia. 

1.3.2 Specific objectives 

1. To compare (CFSR) data against ground observed rainfall data 

2. To evaluate the performance of CFSR data through streamflow simulation 

using the HBV-Light hydrological model. 

3. To understand the rainfall- runoff processes in gauged watersheds 

1.4 Research questions 

1. Is there any significant difference between CFSR climate data and ground 

observed climate data? 

2. Are CFSR rainfall products effective in simulating stream flows in calibration 

to HBV-Light hydrological model for large-scale watersheds? 

3. Are CFSR data-driven regionalized HBV model parameters able to predict 

streamflow at ungauged catchments?  

1.5 Scope of study 

The domain of this study was Omo-Gibe River Basin. For this study, the scope was 

evaluating  and  assessing  the  hydrological  performance  of  CFSR  against  ground 

observed  meteorological  data  after  calibrating  and  validating  at  gauged  catchments 

against  the  observed  flow,  and  therefore,  applying  the  CFSR  data  for  ungauged 
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catchments to generate stream flow in the basin was the main target of this study. The 

HBV hydrological model was used. 

1.6 Significance of the study 

This research will help other experts, initiatives, and researchers in the areas of water 

resources  planning  and  management  work  by  providing  relevant  information  on 

satellite generated and reanalyzed climate data (CFSR) for hydrological modeling that 

further helps for feasibility studies, flood management including early warning 

systems, design of best management practices to control contaminant runoff, sizing of 

hydraulic  structures  for  extreme  events,  obtaining  the  streamflow  at  the  outlet  of 

ungauged catchments in data-limited basins as an alternative data source. 

It  is  supportive  to climate  modelers and end-users  for  understanding  the  errors 

and vulnerabilities expected and how they broadcast in hydrological modeling. Gives 

information on how to access satellite data to in-filling missed & predicting values of 

daily precipitation & temperature data for ungauged catchments. Reliable continuous 

streamflow forecasting is an important factor in watershed planning and sustainable 

water resource management, as it is instrumental in obtaining a deeper sense of flow 

variability in ungauged basins. Furthermore, the estimation of flood peaks, low flow 

characteristics, and FDCs can be derived once the synthetic continuous flow time series 

is  generated.  Streamflow  data  is  also  used  in  the  design  of  critical  engineering 

structures such as highways, drainage systems, reservoirs, etc. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Satellite Rainfall Products (SRP) 

In 1960, satellite-based remote sensing was launched from the first weather and earth 

observant technology known as meteorological satellite Television Infra-Red 

Observation Satellite (TIROS-1). the study of the earth's atmosphere and oceans using 

data obtained from these remote sensing devices has advanced rapidly.  In the 1970s 

rainfall estimation using Infra-Red (IR) sensors was launched on geostationary 

platforms to track cloud movement and advance climate and weather prediction (Tan 

et al., 2018).  

The primary scope of weather satellites monitoring is to provide information on climate 

occurrence, amount, and spatial distribution over the globe continuously from all areas 

including those inaccessible to gauges and radars for various applications in 

meteorology,  climatology,  hydrology,  and  environmental  sciences  (Shrestha  et  al., 

2017).  

These weather satellites have been serving as a source for radiation signals reflected to 

or  emitted  from  the  ground  and  atmosphere.  This  estimation  is  also  a  method  of 

deriving qualitative (image) and quantitative (value) using visible and infrared 

techniques through indirect relationships between solar radiance reflected by clouds, 

that  is,  the  clouds  brightness  temperature  and  rainfall.  InfraRed  (IR)  precipitation 

estimates are created using the microwave estimates for calibration microwave and IR 

estimates are combined to fill the gaps; and (4) the data are rescaled to monthly totals 

where by gauge observations are also used indirectly to remove bias (Berhanu et al., 

2015). 

Nowadays,  Satellite-derived  rainfall  estimates  have  become  a  powerful  tool  for 

supplementing ground-based rainfall estimates. Recently, Earth observation data for 

environmental  or  societal  purposes  have  become  readily  available  through  Earth 

observation (EO) satellites and data distribution systems. Some of the freely available 

spatially  distributed  rainfall  estimates  are  the  Tropical  Rainfall  Measuring  Mission 

(TRMM), EUMETSAT’s Meteorological Product Extraction Facility (MPEF), Multi-

Sensor Precipitation Estimate–Geostationary (MPEG), the Climate Forecast System 

Reanalysis (CFSR), the NOAA/Climate Prediction Center morphing technique 



 

19 
 

(CMORPH), precipitation estimation from remotely sensed information using artificial 

neural  network  (PERSIANN),  the  Naval  Research  Laboratory’s  blended  product 

(NRLB), and more ( Worqlul et al., 2014).  

Polar-orbiting satellites travel in a circular orbit from pole to pole orbiting at an altitude 

of about 800 km and use microwave (MW) channels (Shrestha et al., 2017). Orbits of 

these satellites are such that they pass the equator at the same local time on each orbit, 

providing  about  two  overpasses  each  day.  Some  Satellite  rainfall  products  such  as 

TRMM, CMORPH, PERSIANN with different spatial and temporal resolutions have 

emerged  as  an  alternative  or  supplement  to  conventional  precipitation  observations 

(Habib et al., 2012). 

2.2 Satellite-Based Rainfall Estimation Methods 

Satellites can be classified based on their purposes. Rainfall estimating satellites are 

primarily  meteorological  satellites  known  to  be  Geostationary  satellites  and  Polar-

orbiting  satellites.  Geostationary  satellites  provide  continuous  observation  of  the 

earth’s  surface  and  provide  data  on  half-hourly  or  even  lesser  durations.  Imageries 

obtained from these satellites are mainly visible (VIS) and IR at a resolution of about 

4  km,  with  information  on  clouds,  collected  once  every15-  30  minutes.  There  are 

several operational geostationary meteorological satellites in orbit such as the 

(MTSAT, GOES, METEOSAT, FY series, and INSAT).  

2.3   Review on some of Satellite Rainfall Products (SRP) 

2.3.1 PERSIANN-CDR satellite rainfall products 

Precipitation  Estimation  from  Remotely  Sensed  Information  using  Artificial  Neural 

Networks- Climate Data Record provides daily rainfall estimates at a spatial resolution 

of  0.25  degrees in  the  latitude  band  600S  -N  from  1983  to  the  near-present.  The 

precipitation  estimate  is  produced  using  the  PERSIANN  algorithm  on  GridSat-B1 

infrared satellite data, and the training of the artificial neural network is done using the 

National Centers for Environmental Prediction (NCEP) stage IV hourly precipitation 

data. PERSAINN-CCS performs fairly well under cold clouds (Tb<253K), extending 

the  algorithm’s  capability  to  capture  warmer  rainfall  requires  more  investigation. 

Employing multi-spectral images (Pombo et al., 2015).  
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2.3.2  TRMM-3B42v7 Rainfall Products 

The Tropical Rainfall Measuring Mission (TRMM), a joint US-Japan satellite mission, 

was launched in 1997 to monitor tropical and subtropical precipitation and to estimate 

its associated latent heating covering the latitude band 50 0N-S. The TRMM satellite 

carries five rain-measuring instruments: Microwave Imager (TMI), the Visible Infrared 

Scanner (VIRS), the Lightning Imaging Sensor (LIS), the Clouds and Earth ‘s Radiant 

Energy System (CERES), and the Precipitation Radar (PR) which is the first 

spaceborne  precipitation  radar  (Huffman  et  al.,  2007).  Estimates  are  provided  at 

relatively fine scales (0.25 ◦×0.25◦,3-h) in both real and post-real time to accommodate 

a wide range of research applications. However, the errors inherent in the finest scale 

estimates are large (NCAR, 2018). 

2.4   Global Re-analysis Weather Data 

Re-analysis  data  are  multilayer  global  gridded  representations  of  weather  using  a 

systematic approach of synthesizing blending both observational and numerical model 

data, spanning an array of climate variables to produce datasets for climate monitoring 

and research. These data are created via unchanging data assimilation schemes and 

models which inject all available observations every 6-12 hours over the period being 

analyzed  (Saha  et  al.,  2010).  The  combination  of  data  and  modeled  fields  provides 

scientists with multi-decadal information on weather patterns, climate variability, and 

change variables from modeled surface fields, such as precipitation, evaporation, and 

radiation fluxes, to components of the stratosphere (Fuka et al., 2014). 

Global reanalysis of weather data provided by the United States and Europe is currently 

used for various hydrological applications around the world. some of them are National 

Centers  for  Environmental  Prediction  (NCEP)  Climate  Forecast  System  Reanalysis 

(CFSR); the NCEP and US Department of Energy (DOE) NCEP/DOE; the NCEP and 

the National Center of Atmospheric Research (NCAR) NCEP/NCAR; the European 

Centre for Medium-Range Weather Forecasts (ECMWF) RA-15/40; Japan 

Meteorological Agency (JMA) JRA-25; and National Aeronautics and Space 

Administration (NASA)  (HU et al., 2017). 
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2.4.1 Climate Forecast System Reanalysis (CFSR) 

The CFSR is a third-generation globally available reanalysis product and high 

resolution, blending atmosphere-ocean-land surface-sea ice system to provide the best 

estimate of the state of these coupled domains. The CFSR has also been extended as an 

operational,  real-time  product  into  the  future  with  appealing  strengths  include  (1) 

joining of atmosphere and ocean during the prediction of the 6-hour guess field; (2) an 

interactive sea-ice model; and (3) assimilation of satellite radiances by the Grid-point 

Statistical  Interpolation  (GSI)  scheme  over  the  entire  period  (National  oceanic  and 

atmospheric administration,1979-2011). The CFSR atmospheric spatial resolution is 

approximately 38 km with 64 levels extending from the surface to 0.26 hPa. Satellite-

based radiance observations were bias-corrected with spin-up runs at full resolution, 

considering variable CO2 concentrations. This procedure enabled smooth transitions 

of the observation record due to evolutionary changes in satellite observing systems 

(Penman, 2020).  

CFSR  data  consider  the  alteration  in  CO2,  aerosols,  and  trace  gas  variations  in  the 

atmospheric model and assimilate the radiance measurements from a series of National 

Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites (Zhang et 

al., 2020). 

The CFSR atmospheric, oceanic, and land surface output products are available at an 

hourly time resolution and a 0.312 x 0.312-degree latitude and longitude resolution 

(NOAA).  Application  importance  of  CFSR  dataset  NCEP  climate  forecast  system 

reanalysis (CFSR) data set for small to medium-sized watershed can qualify and be the 

best choice with the following criteria (Fuka et al., 2014). 

(1) the dataset should be open and available, including all climate variables. 

(2) a spatial resolution needs to be 38 km; and 

(3) the length of records should include adequate historical coverage to allow 

model calibration and validation, and extend to the present. 

Weather  is  often  monitored  at  a  location  outside  the  watershed  to  be  modeled, 

sometimes at a long distance from the watershed as a result, the available records may 

not meaningfully represent the weather occurring over the watershed. An additional 

complication  is  that  rain  gauge  data  effectively  point  measurements  which  may 

represent precipitation poorly across a watershed particularly if there are high 

hydroclimatic gradients (Fuka et al., 2013).  
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CFSR can be utilized to substitute precipitation inputs in hydrological modeling. These 

data have their advantages when determining different forms of precipitation such as 

snow, hail, rainfall, and the appropriate relationship between radar reflectivity and rain 

rate,  thus,  there  is  no  need  to  consider  the  additional  method  to  estimate  weather 

conditions for watershed-scale modeling, one possibility is the use of multilayer global 

gridded representations of weather known as reanalysis data sets. 

2.4.2 Bias correction for CFSR data 

Satellite rainfall products may not detect the rainfall from the warm clouds as the cloud-

tops would be too warm for IR thresholds, and there will not be much ice aloft to be 

detected by PM sensors (Habib et al., 2012).  

National Oceanic and Atmospheric Administration’s (NOAA) is a popular data source 

for  satellite-based  rainfall  estimates  that  uses  multiple  passive  microwave  (PMW) 

satellites and Thermal infrared (TIR) images for estimation of precipitation and these 

satellite  products  are  mostly  prone  to  errors  as  they  are  estimated  from  secondary 

sources (for instance, cloud top brightness temperature) are subjected to a bias of under 

or overestimation of the rainfall event when compared with Insitu rainfall data. For 

example, A TIR sensor provides useful information on storm clouds based on top cloud 

temperature by assuming that relatively cold clouds are associated with thick and high 

clouds that tend to be associated with the production of high rainfall rate underestimates 

warm rain and misidentifies cirrus clouds as rain  (Romilly & Gebremichael, 2011). 

Passive Microwave sensors are not  available on geostationary satellites, which makes 

them have longer latency. 

Worqlul  et  al.  (2017)  evaluated  CFSR  for  Orographic  and  convectional  effects  by 

plotting the long-term annual average CFSR rainfall against station elevation to see the 

rainfall–elevation relation. Two clear trends were observed. The first one shows a 50 

mm  of  rainfall  increase  for  every  100  m  elevation  increase  and  the  second  trend 

observed was a 125 mm rainfall increase for every 100 m elevation increase. These two 

relations can be explained by stations likely affected by a combination of orographic 

and convective rainfall. Orographic rainfall is one of the common rainfall types in the 

study basin and happens due to cloud formation at the mountain face with the lifting of 

moist carrying wind and air mass blowing from waterbodies. According to Dinku et al. 

(2008),  this  orographic  cloud  may  lead  to  precipitation while  the  cloud  top  is  still 
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relatively warm and may not be detected by satellite sensors. Hence bias correction of 

CFSR should be carried out for the study basin. 

2.4.3 Previous study on satellite weather data 

Dile & Srinivasan (2014) evaluated CFSR data for hydrologic  modeling in data-

scarce  watersheds  of  the  Blue  Nile  River  Basin,  Ethiopia.  The  Soil  and  Water 

Assessment Tool was used to evaluate the performance of CFSR weather with that 

of conventional weather in simulating observed streamflow at four river gauging 

stations in the Lake Tana basin. Dile & Srinivasan (2014) suggested that the use of 

CFSR data set without model calibration showed reasonable performance at Gilgel 

Abay  and  Gumera  River  gauging  stations  at  a  monthly  time  step  using  two 

performance  indicators,  Nash–Sutcliffe  Efficiency  (NSE)  and  Percentage  Bias 

(PBIAS) coefficients. The result in an NSE value of more than 0.75 showed the very 

good  performance  of  the  model  in  these  gauging  stations.  The  PBIAS  value  for 

Gilgel Abay also indicated very good performance, while the PBIAS value for the 

Gumera showed good model performance. 

Vu  Thi  Thom  (2018)  evaluated  four  gridded  rainfall  products,  including  CFSR, 

APHRODITE, PERSIANN, and TRMM, as input to the SWAT model to simulate 

streamflow against rain-gauge data over the Srepok River Catchment in Vietnam. 

Amongst the four different datasets, the TRMM and APHRODITE data show their 

best match to rain gauge data in simulating the daily and monthly streamflow with 

satisfactory precision in the 2000–2006 periods. The result indicated that the TRMM 

and APHRODITE data have potential applications in driving hydrological models 

and water resources management in data-scarce and ungauged areas in Vietnam. 

Berhanu et al.(2016) used the Climate forecast system reanalysis (CFSR) dataset 

provided by the National Center for Environmental Prediction (NCEP) to study the 

rainfall variability pattern in Ethiopia using the fuzzy overlay technique for multi-

indices of rainfall. The study showed that this dataset captures the rainfall pattern in 

Ethiopia with some magnitude of bias. Bias correction of the CFSR dataset with a 

linear scaling technique was applied. the performance after correction increased to 

NSE value of (0.8), and PBIAS of (1.3) and concluded that the efficiency of the 

recently released CFSR dataset in capturing the daily rainfall patterns of Ethiopia is 

good. Its spatial coverage of approximately 38 km grid size is also an advantage for 

showing the spatially distributed rainfall for different applications. The simulations 
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with CFSR and conventional weather yielded minor differences in the water balance 

components  in  all  but  one  watershed,  where  the  CFSR  weather  simulation  gave 

much higher average annual rainfall, resulting in higher water balance components.  

Both weather simulations gave similar, annual crop yields in the four administrative 

zones. Finally, it was suggested that data-scarce regions such as remote parts of the 

Upper Blue Nile basin, CFSR weather could be a valuable option for hydrological 

predictions where conventional gauges are not available. 

Tolera et al. (2018) evaluated CFSR data with the conventional weather data in the 

Upper Awash. CFSR driven SWAT model to compare the performance of the two 

weather  datasets  at  simulating  monthly  streamflow.  Model  evaluation  statistics 

showed that the CFSR global weather data performed similarly to the conventional 

weather data for simulating the observed streamflow at Melka Kunture station. At 

Keleta station, where the conventional data is scarce, the CFSR performed better 

and good option for areas where no reliable weather data exists for hydrological 

modeling. 

2.5 Hydrological models 

Hydrological models are a simplified, conceptual representation of the components 

of  the  hydrologic  cycle  and  characterizations  of  the  real-world  system  through 

mathematical  abstraction.  It  also  involves  highly  nonlinear  processes,  complex 

interactions and high spatial variability at basin scale. There are different forms of 

hydrological models and are primarily developed for a better understanding of the 

hydrologic  processes  and  prediction  of  hydrologic  phenomena  in  a  watershed  to 

establish baseline characteristics whenever data is not available (Gosain et al., 2009).   

2.5.1 Historical developments of hydrological models 

The hydrological cycle and its dynamic processes have greatly attracted the attention 

of many authorities and researchers on water resources planning programs, in which 

understanding and prediction of the impact of changes in climate and the long-term 

forecasting of the water cycle made to focus on hydrological modelling. Hydrology 

has a long history dating back to several millennia (Biswas, 1970). However, the 

birth  of  hydrologic  modeling  can  be  traced  to  the  1850s  when  Mulvany  (1850) 

developed a method for computing the time of concentration and hence the rational 
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method for computing peak discharge which is still used for urban drainage design, 

Darcy who conducted experiments on flow-through sands and developed what is 

now referred to as Darcy’s law which laid the foundation of quantitative 

groundwater  hydrology,  and  Fick’s  first  law  which  states  that  under  steady-state 

conditions, the diffusive flux is proportional to the concentration gradient (spatial) 

which laid the foundation of water quality hydrology formulating a mathematical 

model  which  represents  hydrologic  processes  and  the  interaction  between  them 

(Gosain et al., 2009).  

2.5.2 Hydrological Model selection 

A wide range of hydrological models are used by different researchers; however, the 

applications of those models are highly dependent on the purposes for which the 

modeling is made (Mcintyre, 2013). According to the  Cunderlik and Simonovic, 

(2007), choice of hydrological models depend mainly on the requirement and needs 

of the research or project under interest and the following as criteria: - 

a)   Required output of the model 

b)   Availability of input data  

c)   Hydrological processes that need to be modeled to estimate the outputs    

adequately 

d)   Prices and availability of the model. 

There are many different reasons why modeling of the rainfall-runoff processes of 

hydrology is needed. The main reasons behind this are a limited range of hydrological 

measurement  techniques  and  a  limited  range  of  measurements  in  space  and  time. 

Many rainfall-runoff models are carried out purely for research purposes as a means 

of  enhancing  knowledge  about  hydrological  systems,  other  types  of  models  are 

developed and employed as tools for simulation and prediction aiming ultimately to 

allow  decision-makers  to  improve  decision-making  about  hydrological  problems 

(Beven, 2000). Among many hydrological models, the conceptual semi-distributed 

model HBV-Light was selected for this study based on the above-mentioned criteria. 

2.5.3 Classification of hydrological models 

Model classifications  are generally based on the method of  representation of the 

hydrological  cycle  or  a  component  of  the  hydrologic  cycle.  The  rainfall-runoff 

hydrological  models  can  be  classified  as:  lumped  or  distributed,  deterministic  or 

stochastic and conceptual or physically based models.  
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According  to  Chow  et  al.  (1988),  stochastic  and  deterministic  models  are  often 

considered to be at the top level of the classification tree, under the way they treat 

the randomness of hydrologic phenomena. Stochastic models use local hydrometric 

data  to  predict  flows.  These  models  allow  for  some  randomness  that  results  in 

different outputs and are based on analysis of past events, commonly rainfall and 

river discharge. Deterministic models generally produce a single output of runoff 

for a given rainfall under identical physical environments. Without going into too 

much  detail,  deterministic  hydrologic  models  can  be  classified  into  three  main 

categories (Cunderlik & Simonovic, 2007). 

A.  Lumped  models:  lumped  hydrologic  model  simulation  evaluated  only  at  the 

outlet of the basin that is without explicitly accounting for the response of individual 

sub-basins  and  parameters  do  not  vary  spatially  within  the  basin.  Parameters  of 

lumped models often do not represent physical features of hydrologic processes and 

usually involve a certain degree of empiricism. According to Haan et al. (1994), the 

impact  of  spatial  variability  of  model  parameters  is  evaluated  by  using  certain 

procedures  for  calculating  effective  values  for  the  entire  basin  and  the  most 

commonly employed procedure is an area-weighted average. Lumped models are 

not usually applicable to event scale processes.  If the interest is primarily in the 

discharge prediction only, then these models can provide just as good simulations as 

complex  physically-based  models  Water  Balance  Model  (WATBAL),  Snowmelt 

Runoff  Model  (SRM),  Identification  of  unit  Hydrograph  and  Components  from 

Rainfall,  Evaporation  and  Streamflow  data  (IHACRES)  are  examples  of  lumped 

hydrological models (Beven, 2019). 

B. Distributed models: distributed hydrological model parameters are fully allowed 

to vary in space at a resolution usually chosen by the user. Distributed modeling 

approach attempts to incorporate data concerning the spatial variation of parameters 

together with computational algorithms to evaluate the influence of this distribution 

on simulated precipitation-runoff behavior. Distributed models require large 

amounts of data for parameterization in each grid cell (Beven, 2000). However, the 

governing physical processes are modeled in detail, and if properly applied, they can 

provide the highest degree of accuracy. For instance, HYDROTEL, MIKE11/SHE, 

and WAT FLOOD are distributed models. 

C.  Semi-distributed  models:  parameters  of  semi-distributed  models  are  partially 

allowed to vary in space by dividing the basin into several smaller sub-basins. Semi-
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distributed model structures are more physically based than the structure of lumped 

models and less demanding input data than fully distributed models. Semi-

distributed  models  can  be  grouped  into  Kinematic  Wave  theory  models  and 

probability  distributed  models.  According  to  (Beven,  2019).  The  Wave  theory 

models are simplified versions of surface and/or the subsurface flow equations of 

physically-based  hydrologic  models.  In  the  case  of  the  probability  distributed 

models, spatial resolution is considered by using probability distributions of input 

parameters across the basin. Examples of semi-distributed models are SWAT HEC-

HMS, HBV(Bergström,2001), and TOPMODEL (Cunderllk, 2003).  

SWAT model 

The Soil and Water Assessment Tool (SWAT) model is one of the river basin or 

watershed scale model developed by the United States Department of Agriculture - 

Agricultural Research Service (USDA-ARS) in Temple, Texas during 1970.  The 

SWAT  model  has  been  applied  in  many  studies  around  the  world,  especially  in 

research  related  to  hydrology,  erosion,  climate,  soil,  temperature,  plant  growth, 

nutrients, pesticides and land management (Arnold et al., 1998). The SWAT model 

is physically based, semi-distributed, continuously simulating stream flow, sediment 

yield, nutrients, pesticides, and agricultural management in watersheds with varying 

soils, land use, and management conditions over long periods (Neitsch, et al, 2011).  

The major advantage of the SWAT model is its accessibility with detailed online 

documentation, user groups, video tutorials, international conferences and a unique 

literature database (more than 2700 papers) are available. This all makes the tool 

user-friendly, one of the best known and most widely used tools to develop water 

quality models at the watershed scale and its demonstrated capability almost in all 

basins of Ethiopia. The model is continuously improved and supported by the core 

developmental team and as a response to shortcomings demonstrated by many users 

(Czapar et al., 2005). This results in the development of new tools, e.g., GIS interface 

with pre-and post-processing and statistical evaluation tools. In addition, a trend to 

interface SWAT with other environmental or economic models enlarges its 

application range (Gassman et al., 2007).  

The limitation of the large area hydrologic modeling of SWAT is the spatial detail 

required to correctly simulate environmental processes. For example, it is difficult 

to capture the spatial variability associated with precipitation within a watershed. 
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Another limitation is data files can be difficult to manipulate and can contain several 

missing records. The model simulations can only be as accurate as the input data. 

The third limitation is that the SWAT model does not simulate detailed event-based 

flood and sediment routing (Catherine Kuhn, 2014). 

HEC-HMS model 

The Hydrologic Engineering Center-Hydrological Modeling system (HEC-HMS) is 

a  semi-distributed  rainfall–runoff  simulation  model  developed  by  the  U.S.  Army 

Corps of Engineers at the Hydrologic Engineering Center. HEC-HMS conceptually 

representing watershed behavior as different components of runoff processes 

depending  upon  the  information  needs  of  the  hydrological  study  to  accurately 

predict catchment outflows from upstream sub-catchments along with the drainage 

network. There are four major components for a complete setup of HEC-HMS (1) 

Basin model; (2) Meteorological model; (3) Control specification; and (4) Input data 

(time series, paired data and gridded data to be properly linked with each other for 

accurate  operation.  The  Basin  model  in  HEC-HMS  Model  Setup  contains  the 

hydrologic element and their connectivity that represents the movement of water 

through the drainage system (Scharfenberg, 2016). The arch hydro tool and HEC-

GeoHMS, an Arc view extension developed by the U.S. Army Corps of Engineers 

(USACE)  was  employed  to  create  the  basin  model  background  map  file  and  to 

delineate the sub catchments from the Digital Elevation Model (DEM) using Arch 

GIS  10.4.1.  The  sub  basin  physical  characteristics  such  as  longest  flow  lengths, 

centroidal flow length and slopes derived from DEM are used for estimating the 

initial  hydrologic  parameters  to  be  used  as  an  input  of  HEC-HMS  model.  The 

background maps provide a spatial context for the hydrologic elements composing 

basin model. They are commonly used for showing the boundaries of a watershed 

or the location of streams (USACE, 2005).  

WATBAL model 

An Integrated Water Balance (WATBAL) is a lumped conceptual model developed 

in  the  Stockholm  Environment  Institute  (SEI),  USA  which  represents  the  water 

balance in the use of continuous functions of relative storage to represent surface 

outflow,  sub-surface  outflow  and  evapotranspiration  (Cunderlik  &  Simonovic, 

2015).  It  has  essentially  two  main  modeling  components.  The  first  is  the  water 

balance component that uses continuous functions to describe water movement into 
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and  out  of  a  conceptualized  basin.  The  second  is  the  calculation  of  potential 

evapotranspiration  using  the  well-known  Priestly  Taylor  radiation  approach.  The 

mass balance is written as a differential equation and storage is lumped as a single 

conceptualized  bucket  with  the  components  of  discharge  and  infiltration  being 

dependent on the state variable relative storage (Cunderlik & Simonovic, 2015). 

HBV-Light model 

Hydrological Byr°ans Vattenavdelning (HBV) model is a conceptual semi-

distributed water balance model for continuous daily simulation of catchment runoff 

(Windstorm et al., 1997). The HBV model was originally developed by SMHI in the 

early 70’s to assist hydropower operations aiming to create conceptual hydrological 

model with reasonable demands on computer facilities and calibration data. HBV 

model  is  computerized  catchment  model  that  converts  precipitation,  potential 

evaporation,  and  snowmelt,  if  applicable,  into  streamflow/reservoir  inflow  by 

simulating the natural hydrological processes for continuous simulation of runoff, 

hydrological  forecasting,  design  flood  computations,  and  climate  change  studies 

(Seibert, 2005). 

The  first  version  of  HBV  light  was  programmed  in  1995  and  then  continuously 

updated  by  Jan  Seibert  (at  Oregon  State  University,  the  Swedish  University  of 

Agricultural Sciences, Stockholm University, and the University of Zurich). HBV-

model  has  been  further  developed  by  the  SMHI  (Swedish  Meteorological  and 

Hydrological  Institute)  and  has  become  widely  used  for  runoff  simulations  in 

Sweden (Bergström, 2001). 

The version HBV-light was developed at Uppsala University in 1993 using 

Microsoft  Visual  Basic  and  has  become  widely  used  in  education  at  several 

universities. The important feature of this model is simple to use Windows-version 

for research and education. The HBV model has become widely used and exists in 

several versions where its development started in the1970s (Swedish Meteorological 

and  Hydrological  Institute).  HBV-light  model  was  used  and  tested  for  its  runoff 

modeling capacity in more than 40 countries including Ethiopia. Input data includes 

precipitation, air temperature, long-term average monthly estimates of 

evapotranspiration,  runoff  (for  calibration),  and  basin  geographical  information 

(Marc, 2012). 
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2.5.4 Previous study with HBV-light model  

Seibert, (1999) applied HBV model to eleven catchments in the NOPEX region in 

Sweden  and  establish  a  model  parameter  to  watershed  descriptors  and  modeling 

runoff from ungauged catchments and therefore discuss the physical basis of the 

model.  The  optimized  parameter  sets  were  decided  per  each  catchment  from  the 

Monte-Carlo  procedure,  common  efficiency,  and  a  fuzzy  test  for  uncertainty 

reduction through different objective functions. The runoff generation of the model 

well predicted the observed runoff statics and catchment features were best related 

to six of the 13 parameters. The simulations of runoff using the established regional 

parameter  sets  were  tested  with  variable  results.  Parameter  sets  that  gave  an 

acceptable  agreement  between  observed  and  simulated  hydrograph  (R  eff  >  0.8) 

could be found for all catchments with little unfortunate results for the two smaller 

catchments. 

Parajka et al.(2005) used HBV-Light model to examine the relative performance of 

a range of methods for transposing catchment model parameters to 320 ungauged 

catchments of Austria calibrating from 1987 to 1997 and verifying the model for the 

period  1976–1986.  For  the  calibration  period,  the  median  Nash-Sutcliffe  model 

efficiency (NSE) of daily runoff is 0.67 as compared to NSE = 0.72 for the at-site 

simulations. For the verification period, the corresponding efficiencies are 0.62 and 

0.66. 

2.5.5 Previous study with HBV-light model in Ethiopia 

A study on the HBV-light model in different parts of Ethiopia was also made by 

many researchers and the results showed that the HBV-light model can be taken as 

one of a good hydrological model. Some of them were described below. 

Worqlul et al. (2017) have assessed the performance of commonly used satellite 

rainfall products Climate Forecast System Reanalysis (CFSR) and Tropical Rainfall 

Measuring Mission (TRMM) 3B42 version 7 as input to a semi-distributed 

hydrological model HBV for daily stream flow simulation in the Gilgel Abay and 

Main  Beles  Basins,  Ethiopia.  They  concluded  that  HBV  model  has  explained 

approximately 80 % of the observed flow variation. Rainfall estimate from the CFSR 

has also captured the observed flow though model calibration with a good NSE and 

on average the CFSR runoff simulation has captured approximately 75  % of the 

variation  of  the  observed flow.  HBV  model  through  model  calibration  have 
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responded for the extra rainfall of CFSR satellite rainfall estimate it has compared 

to the gauged rainfall. In HBV model, the maximum soil moisture storage parameter 

(FC)  was  too  large  indicating  a  deeper  hydraulically  active  soil  increasing  the 

storage capacity of the soil. The simulation by the CFSR data for HBV model was 

able  to  capture  the  peak  flows  better  than  the  runoff  simulation  by  the  gauged 

rainfall. So, the CFSR data might be more suitable to predict extreme events when 

using either PED or HBV models. 

Jillo et al. (2017) applied HBV-light model to study the seasonal variability of water 

balance within the Omo-Gibe River Basin. The model predicted the water balance 

components, the seasonal variability of hydrological response, the spatial 

augmentation of aridity with the rainfall regime of all calibrated catchments in terms 

of the Kling-Gupta Efficiency (KGE) measure.  

In this study, the new version ‘HBV-light’ was applied which corresponds to the 

HBV-6 version described by Bergstrom et al. (2001) with two slight changes. the 

new version executes a warming-up for the startup period at which the  variables 

progress from standard opening values to their precise values considering 

meteorological conditions and parameter values.  Besides, the restriction  of using 

only integer values for the routing parameter MAXBAS has been widened.    

2.6 Ungauged catchments 

Ungauged  catchments  are  part  of  drainage  areas  in  the  basin  where  hydrometric 

stations  are  not  available  or  they  became  inactive  and  stream  flow  data  are 

inadequate (in quantity and quality) of hydrological observations  and as a result, 

model parameters are usually transferred from hydrologically homogenous gauged 

catchments. Runoffs are either poorly measured or absent. One possible method is 

the  use  of  conceptual  rainfall-runoff  models.  However,  in  such  models,  most 

parameters are not measurable but have to be estimated by calibration using at least 

observed runoff data Seibert, (1999). However, still the transfer of runoff series in 

time by the use of models is rather difficult. Therefore, model parameters and any 

information  for  hydrological  modeling  in  such  catchments  are  usually  estimated 

from gauged catchments of similar characteristics either by extrapolating or 

regionalization. International Association of Hydrological Science (IAHS) 

dedicated a decade (2003-2012) to the challenging issue of Prediction in Ungauged 
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Basins  (PUB)  and  defined  it  as  the  prediction  or  forecasting  of  the  hydrological 

responses of ungauged or poorly gauged basins and their associated uncertainty. The 

typical approach is to look for relationships between optimized  model parameter 

values  and  catchment  characteristics.  Parameter  sets  can  then  be  compiled  for 

ungauged catchments from measurable variables (Sivapalan, 2003). 

2.7 Regionalization 

Rainfall-runoff modeling of hydrological watersheds is a process by which 

streamflow  is  simulated  using  different  modeling  criteria.  It  also  needs  a  model 

parameter optimization at gauged catchments by fitting to their observed 

streamflow. However, for ungauged catchments, it is difficult to determine model 

parameters using HBV-Light through calibration since observed stream flows are 

not available for calibration. Hence in such cases, it is important to apply 

regionalization (transferring information from gauged catchment to the ungauged 

catchment by defining a mathematical relationship between the calibrated(gauged) 

and ungauged catchments based on their physical characteristics. Therefore, 

regionalization is referred to the prediction of model parameters to any site in the 

basin using spatial and climatological pieces of evidence to generate flow data using 

rainfall as input (Gebru, 2009).  

As it was mentioned in section 1.2, the lower part of the Omo-Gibe River Basin is 

ungauged but has an important hydrological resource surrounding the basin. 

Therefore, in such a large data-scarce area, a conceptual run-off model was set up 

for regionalization of model parameters and flow generation from the CFSR data-

driven  HBV  model.  HBV-Light  has  about  eight  model  parameters  that  require 

optimization at gauged streams. These parameters should be determined for 

ungauged catchments too.  

2.7.1 Regionalization approaches 

Different approaches can be used for hydrological predictions in ungauged basins. 

the choice of catchments from which information is transferred is usually based on 

some sort of similarity. The most commonly used methods are Spatial proximity, 

Sub-basin mean method, Area ratio method, and regional model method.  
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The spatial distance method is applied when the ungauged catchments found near to 

the donor catchments based on the idea that catchments that are close to each other 

will likely have a similar runoff regime since climate and catchment conditions will 

often only vary slightly towards the boundary (Merz et al., 1999). So, the assumption 

is  made  that  catchments  are  highly  homogeneous  with  respect  to  geographic 

location. Elias (1995) used kriging and the nearest neighbor technique in their study 

and concluded that geographical proximity does not guarantee hydrological 

similarity.  The  area  ratio  method  can  be  used  for  simulation  of  streamflow  in 

ungauged basins assuming that the streamflow contribution from each sub-

catchment to the total catchment yield is proportional to a ratio of the catchment area 

or other attributes (Schreider et al., 2002). The sub-basin mean method has the idea 

behind that the catchments will collectively have the mean of similar characteristics 

and  then  the  mean  of  model  parameters  represent  the  area.  The  Regional  model 

method detailed in sub-section 3.5 was applied in this study. 

2.7.2 Regional model development 

The determination of the mathematical relationship between the spatial and temporal 

distribution  of  the  model  parameters  for  each  catchment  uniquely  in  the  basin 

(parameter  estimation)  scheme  consists  of  regression  equations  that  relate  each 

model parameter to the physical catchment characteristics (land surface, 

topographical,  and  climatological  characteristics)  of  both  ungauged  and  gauged 

catchments (Parajka et al., 2005). To characterize the values of the model parameters 

for each catchment through  a  regression model, the optimized model parameters 

were first calibrated and validated at the gauged catchments.  

2.7.3 Principal component analysis (PCA)  

Run-off  estimation  at  a  particular  location  is  dependent  on  several  catchment 

characteristics  but  these  Physical  catchment  characteristics  are  correlated  among 

themselves. Besides, some hydrological components are more predominant in their 

information content than other components. Therefore, PCA is a popular statistical 

technique that transforms the original correlated variables into uncorrelated 

components (also called orthogonal components or principal components). These 

components are the linear transformations of the original variables of an orthogonal 

axis (Wuttichaikitcharoen & Babel, 2014). PCA can therefore remove the 

correlation among the independent variables (catchment characteristics) by forming 
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another set of uncorrelated variables and possibly reduce the dimension of the data 

matrix before regressing them on the model parameters in the regional model. PCA 

is therefore a technique used for reducing redundancy of catchment descriptors and 

find the more effective parameters for prioritization of the watershed and concluded 

that the results of PCA reflect a good look on the prioritization of watershed.  

Sharma  et  al.,  (2014)  applied  Principal  component  analysis  to  13  dimensionless 

geomorphic parameters on 8 sub watersheds of Kanhaiya Nala watershed tributary 

of Tons River located in Part of Panna and Satna district of Madhya Pradesh, India, 

to group the parameters under different components based on significant 

correlations.  Therefore,  Principal  Component  loading  is  applied  to  get  a  better 

correlation and group the parameters into physically significant components in the 

regional model. 
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CHAPTER 3 MATERIALS AND METHODS 

3.1 Description of the Study Area 

3.1.1 Location 

The study area is one of the major river basins in Ethiopia and is situated in the 

southern part of the country. The basin covers an area of 79,000 km 2 with a length 

of 550 km and an average width of 140 km. The geographic location is 4 000’N & 

9022’N latitude  and  34044’  E  &  380024’  E longitude and  a  mean  altitude  of 

2800masl.  The  unique  characteristic  of  this  basin  is  its  complex  topography 

separated abruptly into the highlands in the north and lowlands in the south. The 

western watershed is the range of hills and mountains that separate the Omo-Gibe 

Basin from the Baro-Akobo Basin. To the north and northwest, the basin is bounded 

by the Blue Nile Basin with a small area in the northeast bordering the Awash Basin. 

(Richard Woodroof and Associates, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: Location map of study area 
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3.1.2 Climate 

The climate of the Omo-Gibe River Basin varies from a tropical humid one in the 

highlands to a hot arid climate in the southern part of the floodplain. The climate in 

the entire part is tropical sub-humid. Precipitation in the Basin diverges from over 

1900 mm per annum in the north-central areas to less than 300mm per annum in the 

south. Furthermore, the rainfall seasonality is unimodal for the northern and central 

parts of the basin and bimodal for the south. The average yearly temperature in the 

basin fluctuates from 160c in the plateaus of the north to 290c in the lowlands of the 

south. As the country, Ethiopia is a tropical region, the Inter-Tropical Convergent 

Zone (ITCZ) is the principal factor that influences its weather system. The seasonal 

rainfall distribution in the Basin arises out of the yearly exodus of the ITCZ. The 

Rainfall pattern strongly decreases from north to south of the watershed particularly 

less  than  300  mm/year  near  Lake  Turkana  (Richard  Woodroof  and  Associates, 

1996). 

 

         

3.1.3 Topography  

The topography of the  Omo-Gibe River Basin  as a whole is characterized by its 

physical variation. The northern two-thirds of the basin has mountainous to hilly 

terrain cut by deeply incised gorges of the Gojeb, and Gilgel-Gibe Rivers, while the 

southern one-third of the basin is a flat alluvial plain punctuated by hilly areas. The 

northern and central half of the basin lies at an altitude greater than 1500m.a.s.l with 

a maximum elevation of 3360m.a.s.llocated between Gilgel-Gibe and Gojeb 

tributaries), and the plains of the Lower-Omo lies between 400-500 m.a.s.l.  
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Figure 3.2: Mean monthly rainfall of some stations (1987 -2010). 
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The headwaters of the Great-Gibe River are at an elevation of about 2200 m.a.s.l. 

Although there are some important tributaries from different directions, the general 

direction  of  flow  of  the  Gibe  River  is  towards  the  Omo  River  and  then  to  Lake 

Turkana a fault feature, filled with alluvial and lacustrine sediments of recent origin 

associated with the Great Rift Valley (Jillo et al., 2017). 

3.1.4 Land use 

Most  of  the  northern  catchments  of  the  Omo-Gibe  Basin  is  under  extensive 

cultivation with increased land pressure, meaning the expansion of cultivated areas 

into increasingly marginal lands at the expense of woodlands. Deforested areas are 

now confined to areas too steep and inaccessible to farm. The main gorges of the 

basin are relatively unpopulated and support a cover of open woodland and bushland 

with grasses, the eastern part of the basin has some of the most densely populated 

and intensively farmed areas in the country. The south of the basin is more sparsely 

populated with a greater population of natural vegetation, though even here the forest 

is decimated at an alarming rate (Sahle et al., 2019). 

3.1.5 Drainage sub-basins and River system of Omo-Gibe River Basin 

Recently, river flows are being measured at different points in the basin. Of these all 

the stations, except one, measures flow in small sub-basins. The exception is the 

gauging station on the Gibe at Abelty where the catchment area is 15,804 km 2 and 

represents about 20 % of the basin area. The northern part of the catchment has many 

tributaries from the northeast, the largest ones being the Wabe and the Walga. These 

drains largely cultivated land, much of it with rather impeded drainage; this is an 

area where erosion processes are important. The Tunjo and Gilgel-Gibe are rivers 

also draining mainly cultivated land from the southwest; having a higher proportion 

of more permeable soils than the Walga and Wabe catchments (Richard Woodroof 

and Associates, 1996). 

3.2 Data collected and materials used in the study 

3.2.1 Data collected 

To achieve the proposed objectives, having relevant data is mandatory. These data 

are satellite-produced weather data (CFSR), Meteorological data, Hydrological data 

& data of catchment characteristics of the basin.  
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3.2.1.1 Ground meteorological data 

In the study basin, the meteorological stations located in and around the watershed 

for  the  required  period  of  records  of  different  classes  were  collected  from  the 

Ethiopian National Meteorological Agency (NMA). Meteorological data that were 

collected for estimation of streamflow include rainfall, temperature, relative 

humidity, topographic and vegetation information, wind speed, and sunshine hour. 

Uneven  distribution  and  data  incompleteness  in  the  stations  have  challenged  the 

performance of meteorological data to use as a reference for CFSR data evaluation. 

Therefore, the selection criteria of the stations were based on their long-time data 

availability  and  their  relative  impact  on  the  study  area  (weight)  around  with 

representative coverage and Class (that was given by the agency).  

 

 

 

 

 

 

 

 

 

 

 

3.2.1.2 River Discharge Data 

River  discharge  data  of  the  basin  were  collected  from  the  Ministry  of  Water, 

Irrigation, and Energy (MoWIE), Basins Development Authority (BDA), Hydrology 

and Water Quality Directorate (HWQD) for a required period of years. These data 

were  then  used  for  hydrological  modeling  (sensitivity  analysis,  calibration,  and 

validation of the model). There are 33 operational flow gauging stations in the upper 

and central parts of the basin, most of which are located in small streams that could 

not be representative of the runoff dynamics in the basin, and besides many have 

 
Figure 3.3: Meteorological stations and River system of Omo-Gibe Basin  
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only short records with many missing data and available from 1979 to 2010 in most 

stations. The southern, arid sub-basin are ungauged (Jillo et al., 2017). There is also 

a considerable fluctuation of flow due to rainfall and temperature seasonal variation  

(Saito et al., 2018). The stream flow gauging stations used in this study were shown 

in Figure 3.2.1.1.   

3.2.1.3 Climate Forecast and System Re-analysis (CFSR) data 

The CFSR dataset include daily rainfall, maximum and minimum temperature, wind 

speed, relative humidity, and solar radiation, and sunshine hour, downloaded from 

the globally accessible from http://cfs.ncep.noaa.gov/cfsr for a bounding box of 4º 

00” N - 9º22” N latitude and 34º44“E - 38º 24” E longitude for the period 1979 to 

2010 on daily basis. The data set was then clipped for only the watershed boundary 

of  the  Omo-Gibe  River  Basin  with  the  support  of  GIS  application.  CFSR  has  a 

spatial resolution of 38km*38km (0.32º * 0.32º) grid size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 : Distribution of CFSR Grid data at Omo-Gibe Basin  
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3.2.1.4 Mean Annual Rainfall and Mean Annual Potential Evapotranspiration 

map  

Runoff depends on the intensity of rainfall. More the rainfall, more will be a runoff. If 

the rainfall intensity is very less and it rains as light showers then much of the water 

will be lost in infiltration & evaporation resulting less runoff. The mean annual rainfall 

distribution map and mean annual evapotranspiration maps were kindly provided by 

International Water Management Institute (IWMI) in a raster format and extracted for 

each sub-catchment using Arc Map. These maps are important indicators of the spatial 

variability of climate in the basin that directly affects the rainfall-runoff relations and 

the surface energy balance that how much water is removed from each watershed. As 

shown in Figure 3.6. The maps were also used for grouping the catchments based on 

the similarity of climatic indices in the regionalization process since catchments with 

similar attributes have a comparable contribution to runoff generation. The climate of 

the  Omo-Gibe  Basin  is  characterized  as  tropical  and  humid  in  the  north  and  north 

western part and hot and arid in the southern part with spatiotemporal variations of five 

rainfall  regions  and  temperature  observed  across  the  basin,  three  of  them  having  a 

unimodal and one is a bimodal rainfall regime. Tesfaye (2011) has used the MAR and 

MAPE map indices in the regionalized model in Omo-Gibe Basin and got reasonable 

relation with model parameters. 

 

 

 

 

 

 

 

 

 

 Figure 3.5: Mean Annual Rainfall and Mean Annual Evapotranspiration map 
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these  maps  were  also used  to  compare  the mean  annual rainfall  and potential 

evapotranspiration indices calculated from the CFSR and meteorological data applying 

the Hargreaves method. 

3.2.1.5 The Normalized Difference Vegetation Index (NDVI)  

Catchments were classified based on their land use and land cover indices using the 

NDVI  map  obtained  from  IWMI  using  the  raster  calculator  in  ArcMap  for  each 

catchment ranging from -1 to 1. As the presence of vegetation cover increases the water 

holding capacity of the soil and reduces the peak runoff by causing the retardation of 

the overland flow. As shown in Figure 3.7 below, the central-western part of the basin 

boundary area has extensive tracts of healthy, dense vegetation forest confined to areas 

too steep and inaccessible to farm with NDVI values of 0.68 to 0.98. The Gibe, Gojeb, 

and Omo gorges are relatively unpopulated and support a cover of open woodland and 

bushland through the inaccessible area, such as where the Addis Ababa to Jimma road 

crosses the Gibe Gorge, sparsely vegetated areas with NDVI of 0.2 to 0.5. The Omo-

Gibe  River  bodies  and  lower  parts  with  rocks,  clouds,  and  bare  soil  have  negative 

NDVI values.  

 

 

 

 

 

 

 

 

 

           

 

 

 

                           

Figure 3.6: NDVI map of the Omo-Gibe River Basin 
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3.2.1.6 Soil maps 

Rainfall-runoff  model  parameters  were  usually  sensitive  to  soil  descriptors  of  the 

catchments that govern the hydrological process. The soil maps of the study basin were 

obtained from IWMI and used as a potential index for each catchment include (Soil 

permeability, Soil Available Water Content, Soil bulk density).  

Soil permeability (SAT_K) map  

The permeability index of the study area ranging from 7.42 m/s to 34 .5 m/s indicating 

the spatial soil water movement and relates to the response routine of the upper soil 

zone (ALPHA) of the model. Hundecha & Ouarda (2008) have shown the correlation 

of ALPHA with land use and soil permeability. In Booij et al. (2007) ALPHA got a 

positive correlation coefficient with permeability index and physiographic descriptors. 

(Jillo et al., 2017) established a positive correlation of the permeability index and slope 

direction with (ALPHA) in the study basin.  

Soil bulk density (SOL_BD) map 

Soil  bulk  density  of  the  study  area  ranging  from  a  minimum  of  1.1  kg/dm³  to  a 

maximum of 1.34 kg/dm ³ with an average of 1.7 kg/dm ³ is relevant information with 

soil profile depth, due to changes in organic matter content, porosity, and compaction 

accounting for horizon mass. 

 

  

 

 

 

 

 

 

 

 

 

 

 

      

 

Figure 3.7: Soil Permeability (SAT_K) and Bulk Density (SOL_BD) map 
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Available Soil Water Content (SOL _AWC) map 

The HBV-Light model has been reported to cover a wide range of soil heterogeneity 

conditions  and  parameters  that  controls  the  model  parameters  in  the  rainfall-runoff 

process function with empirical parameters, BETA and FC. BETA is an index of soil 

heterogeneity in water content in the basin, A BETA value of zero implies that a basin 

entirely lacking in the water holding capacity in the soil whereas a high BETA value 

indicates such homogenous condition that the whole catchment is regarded as a bucket 

that  overflow  Simultaneously  when  the  field  capacity  is  reached  (Bergström  et  al., 

2001).  

Available soil water content is related to climate variables (temperature, wind speed, 

and humidity) that may control the model parameters in the runoff processes.  

As shown in the Figure 3.2.8 below, the soil water content decreases from northern 

catchments (high summer rainfall intensity, wet, humid temperate) to southern 

catchments  (low  rainfall  intensity,  arid,  high  evapotranspiration)  leading  to  low 

streamflow  towards  north  south. Temperature,  wind  speed,  and  humidity  affect 

evaporation  and  transpiration  rates,  thus  infiltration  rate,  and  soil  moisture  regime, 

following change in runoff volume. On the other hand, these soil characteristics, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.8 Soil Available Water Content map of the Basin 
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vegetation cover and slope angle are among the natural factors controlling the 

proportion of precipitation that is converted to runoff in a given landscape, and the time 

it takes for runoff to enter a stream.  

3.2.1.7 Digital Elevation Model (DEM) data 

The Digital Elevation Model (DEM) used in the Omo-Gibe River was obtained from a 

digital  elevation  map  of  the  study  area  that  was  prepared  using  the  Shuttle  Radar 

Topography Mission (SRTM) with a resolution of 30 m x 30m. Then the DEM was 

loaded into ArcGIS 10.41 in a grid format as a digital representation of the land surface 

elevation and extraction of catchment indices such as elevation, slope, river networks 

for hydrological modeling. 

3.2.2 Materials used 

 ARC-GIS 10.4.1, to obtain hydrological and physical parameters and spatial 

information.  

 HBV-Light model, for rainfall-runoff simulation from both datasets.  

 SPSS  software:  statistical  package  for  developing  multiple  linear  regression 

between  model  parameters  and  physical  catchment  characteristics  including 

PCA analysis. 

3.3   Data analysis 

3.3.1 Rainfall data quality check 

Homogeneity check 

The homogeneity test of rainfall stations was performed to identify a change in the 

statistical properties of the time series data which was caused by either natural or 

man-made factors (Wijngaard et al., 2003). For this study, a homogeneity test has 

been carried out to the neighboring stations that are supposedly homogeneous.  The 

non-dimensional of the month ‘s value was obtained as: -  

𝑃𝑖 =
𝑃

𝑖

𝑃𝑎𝑣̅̅̅̅̅ ∗ 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … . (3.1)  

where, 𝑃𝑖 represent non-dimensional value of rainfall for the month 𝑖, 𝑃
𝑖  represent 

over years averaged monthly rainfall at the station  i, and  𝑃 𝑎𝑣   is the over  year 

average  yearly  rainfall  of  the  station.  In  this  study,  the  homogeneity  of  rainfall 
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stations  was  described  below  in  the  graph.  In  Figure  3.3.1,  the  selected  rainfall 

stations were non-dimensionalized and plotted together to analyze their 

homogeneity.  The  same  mode  and  pattern  of  the  stations  were  observed  and 

maximum  rainfall  falls  of  the  stations  between  May  to  September  in  all  stations 

which shows the homogeneity of the stations. All the values of Pi show the result of 

homogeneity analysis and the time-series observational data of relatively selected 

stations are homogenous.  

 

 

 

 

 

 

 

 

 

 

Check for Consistency  

Double mass curve analysis was carried out to test the internal consistency of a time-

series of observational data graphically for identifying and adjusting the 

inconsistency if any in a station record by comparing its time trend with those of 

adjacent stations in such a way that the accumulated totals of the gauge in question 

were compared with the corresponding totals for a representative group of nearby 

gauges (Giambelluca et al., 1986). When a significant change in the regime of the 

curve is observed, it reveals that rainfall data is inconsistent at that station and it 

should be corrected by using Equation 3.2 below (Subramanya, 1998). 

𝑃𝑎𝑑𝑗 =
𝑀𝐶

𝑀
∗ 𝑃𝑖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (3.2)  

Figure 3.9: Homogeneity test for meteorological stations 
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Where 𝑃𝑎𝑑𝑗   is the adjusted rainfall at any period, Pi is originally recorded rainfall at the 

period, Mc is the correct (straight-line) slope of the double mass curve and M is the original 

slope of the double mass curve. 

From the double mass curve analysis (Figure 3.3.2), the lines are fairly smooth with 

no station displaying a long-lasting break in slope. Therefore, and the stations used 

in  this  study  have  not  undergone  a  significant  change  and  therefore  no  need  for 

further correction of data consistency. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Filling in Missing Weather Data 

The missed data in the rainfall records of gauged stations usually estimated from the 

neighboring stations by applying the arithmetic mean method, normal-ratio method, 

and simple linear interpolation methods. The normal-Ratio method was used for this 

study because the mean annual precipitation of the adjacent stations exceeded the 

station in question by more than 10% and it is formulated as 

𝑃𝑥 =
1

𝑁
(
𝑁𝑥

𝑁𝐴
𝑃𝐴 +

𝑁𝑥

𝑁𝐵
𝑃𝐵 +

𝑁𝑥

𝑁𝐶
𝑃𝑐 +. . . . . . +

𝑁𝑥

𝑁𝑁
𝑃𝑁 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3) 

Where,  𝑃𝑥  is the precipitation for the station with a missed record 

PA ,   PB ,   PC,  PN    the  corresponding  precipitation  at  the  index  stations  and 

NA, NB, NC, NN   are the long-term mean monthly precipitation at the index 

stations and station x 

Figure 3.10: Consistency of rainfall data in the stations 
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Streamflow Data Analysis 

The selected hydrological stations with their catchments are in (Appendix D, Table 

6).  Filling  and  extension  of  missed  records  were  carried  out  by  developing  a 

correlation  between  the  station  with  missed  data  and  any  of  the  nearby  stations, 

whichever  gives  good  correlation  streamflow  with  the  properties  of  historical 

observed data (Maidment, 1995).  

Test for Outliers 

The presence of high and low outliers in the measured streamflow data and some 

unrealistic records such as negative flows, constant observations for successive days 

tested under the assumption that the logarithms of the original series are normally 

distributed. For the natural logarithm of the variable, the upper and lower limits of 

outliers are given as: 

𝑋  ℎ𝑖𝑔ℎ𝑒𝑟 =  𝑒𝑥𝑝 (𝜒̅   +  𝐾 𝑛 ∗ 𝑆 𝑦  ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.4) 

𝑋  𝑙𝑜𝑤𝑒𝑟𝑟 =  𝑒𝑥𝑝 (𝜒̅   −   𝐾 𝑛 ∗   𝑆𝑦  ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.5) 

where,  𝝌̅   and 𝑺𝒚  are the mean and standard deviation of the natural logarithm of the 

original variable respectively.  𝐾𝑛  is the frequency factor representing the outlier test 

statistic that depends on the sample size n as shown in equation 3.6. 

𝐾𝑛   =   −0.9043  + 3.345 √ log 𝑛  - 0.4046 log 𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.6 

Some flow gauging stations with the mean monthly flows have shown below in the 

figure. 
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3.3.2 Evaluation of CFSR for Orographic effect 

In order to investigate the effect of orographic rainfall in the estimation of CFSR and 

meteorological data in each catchment of study area, the long-term mean annual CFSR 

and  ground  observed  rainfall  from  1987  to  2010  was  plotted  against  catchment 

elevations to see the rainfall–elevation relations. As the result shown in the Figure 3.12, 

its observed that there is no any significant correlation between the mean annual rainfall 

estimates  of  the  two  data  sets  and  mean  elevation  and  consequently  no  need  for 

precipitation  lapse  adjustment  to  the  HBV-Light  model  simulations  conducted  by 

CFSR data.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Evaluation of CFSR data for Orographic effect 
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Figure 3.11: Monthly Average Discharges at a some of gauging station (1987-2010) 
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According to Saha et al., (2010), CFSR is configured with blending model gravity 

wave drag based on Kim and Arakawa (1995) approach and sub-grid scale mountain 

blocking  following  Lott  and  miller  (1997)  algorithm  for  coupling  atmospheric, 

oceanic, and surface - modeling component and elevation gradient.  

3.3.3 Bias correction for CFSR data 

For  this  study,  from  among  other  bias  correction  methods  most  of  which  are 

statistical, the linear scaling (LS) bias correction method that focuses mainly only 

on  the  magnitude  of  the  data  excluding  the  pattern  and  trend  of  the  dataset  was 

chosen based on findings of Berhanu et al. (2016), Worqlul et al. (2014), who were 

showed that CFSR can reproduce the observed rainfall pattern in the Blue Nile basin, 

Ethiopia  but  overvalued  or  undervalued  only  the  magnitude  and  therefore,  the 

adjustment was only made to conform the monthly average of adjusted values to the 

observed ones as described in equation 3.6. The change factor for precipitation is a 

multiplier that is computed from the ratio of the monthly mean of the observed to 

the raw dataset. 

................................................................................................(3.6)obs
dcorr dsat

sat

P
P P

P
=  

𝑃𝑑𝑐𝑜𝑟   represent corrected daily satellite rainfall data, 𝑃𝑑𝑠𝑎𝑡  represent long-term 

mean monthly raw satellite rainfall data. 𝑃𝑜𝑏𝑠  represent long-term mean monthly 

observed rainfall data. 

3.3.4 Comparison of areal CFSR data to areal ground observed rainfall data 

Areal  estimates  of  daily  CFSR  data  were  compared  to  the  areal  estimates  of 

interpolated ground rainfall estimates at each catchment in the basin from 1987 to 

2010 years. Areal estimates of satellite rainfall grid generated from CFSR data were 

determined by weighting each CFSR station in proportion to its spatial coverage of 

1444 km2. Each CFSR station is multiplied by its area and the sum of those products 

divided by the total area of the catchment. The sum of the area of each CFSR station 

gives  the  area  which  is  equivalent  to  the  total  watershed  area.  Ground  rainfall 

observations are interpolated using the Thiessen polygon method. There are nineteen 

catchments extracted in the basin including ungauged catchments and the 

comparisons were carried out on the daily and monthly time steps using time series-
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based  metrics  include  the  regression  coefficient  (R²),  Nash–Sutcliffe  measure  of 

efficiency (NSE), and percent bias (PBIAS).  

The coefficient of determination (R²): - is the square of the Pearson product–moment 

correlation  coefficient  and  describes  the  proportion  of  the  total  variance  in  the 

observed data that can be explained by the model. It’s value is an indicator of the 

strength  of  the  relationship  between  the  observed  rainfall  and  CFSR  rainfall.  R2 

ranges  from  zero  to  one  with  higher  values  of  one  indicating  better  agreement 

(Legate and McCabe, 1999) and formulated as: 

( ) ( )

2

12
2 2

1

( )( )

.................................................................(3.7)

n

sim sim obs obs
i

n

sim sim obs obsi

Q Q Q Q

R
Q Q Q Q

=

=

 
− −  =
− −




 

Percent bias (PBIAS): - evaluates the ratio of the mean value of the CFSR data to 

the ground rainfall gauge by measuring the average tendency of the simulated data 

to be larger or smaller than their observed counterparts. It shows overestimation or 

underestimation in the magnitude. The value of perfect much (no PBIAS) is zero. A 

value  greater  than  zero  indicates  an  underestimation  of  the  observed  rainfall, 

negative value rises from the overestimation of CFSR (Gupta, 1999). 

1

( ) ( )
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
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The Nash-Sutcliffe efficiency (NSE): - describes how well the CFSR agrees to the 

observed rainfall. The model is taken as very good performing when ENS is 0.75 to 

1 and fair to good performing model when is 0.6 to 0.8 (Nash and Sutcliffe, 1970). 

 
 

2

2

( ) ( )
1 .........................................................................(3.9)
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Q Q
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Q Q
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= −
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Where: - 𝑄𝑜𝑏𝑠  is observed discharge in the simulation case and ground observed 

rainfall in the comparison case,  𝑄𝑜̅
̅̅̅  mean of observed discharge in the simulation 

case or mean of CFSR estimate in the comparison case, Qsim is simulated discharge, 

𝑄𝑠̅
̅̅  the mean of simulated discharge in the simulation case or mean of CFSR in the 

comparison case. 
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3.3.5 Evaluation of rainfall detection capacity of daily CFSR data 

In this study, the misses and hits of CFSR data were evaluated using two verification 

methods, the Probability of  Detection (POD) and The False Alarm Ratio (FAR) 

based on the contingency Table 3.1 (Shrestha et al., 2017). Therefore, the assessment 

was conducted for the visualization of only rain detection capability of the CFSR 

regardless of its magnitude against observed data as follows.  

The Probability of Detection (POD): as is illustrated in table 3-2, it indicates what 

fraction of the observed rainfall was just detected by CFSR. A perfect score of POD 

is 1 and a poor score is 0. 

..................................................................................................(3.10)
D

POD
D B

=
+

 

The False Alarm Ratio (FAR): measures the fraction of rain detections that were 

falsely alarmed (rainfall did not occur) and vice versa. A perfect score is 0. 

...................................................................................................(3.11)
C

FAR
D C

=
+

 

 “Hit” shows that CFSR detects rainfall of a certain value as the observed 

does.  

 ‘False alarms’ showed that CFSR estimated oppositely to the Insitu 

measurement.  

 ‘Misses’ represent CFSR failed to detect a rainfall of a certain day and 

 ‘Correct negatives” show correctly estimated no rain events by the CFSR 

product as the Insitu measurement (Shrestha, 2017). 

Table 3.1: Rain detection capability and False Alarming Ratio 

 

 

 

 

 

Ringard  et  al.,  (2015)  recommended  that  for  flood  forecasting  and  hydrological 

modeling purposes, it is important to avoid underestimations of rainfall events and 

rainfall amounts, and then avoid PBIAS > 0 and low POD. In contrast, for drought 

 
                 
              
       
  

  
           Satellite rainfall 

   No rain yes rain 

        
       Observed rainfall 

No rain  Correct negative (A) False alarm (C) 

yes rain  Miss(B) hit (D) 
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monitoring, overestimations must be avoided, and then avoid PBIAS < 0 and high 

FAR. 

3.3.6 Description of HBV-Light model 

Hydrological Byr°ans Vattenavdelning (HBV) model is a conceptual semi-

distributed  water  balance  model  for  continuous  daily  simulation  of  catchment 

runoff. The important feature of this model is simple to use Windows-version for 

research  and  education.  HBV-light  model  was  used  and  tested  for  its  runoff 

modeling  capacity  in  more  than  40  countries  including  Ethiopia.  Input  data 

includes  precipitation,  air  temperature,  long-term  average  monthly  estimates  of 

evapotranspiration,  runoff  (for  calibration),  and  basin  geographical  information 

(Bergstorm, 1995).  

3.3.7 HBV-Light model components and structures 

HBV-light consists of a snow routine representing snow accumulation and snowmelt 

by  a  degree-day  method,  a  soil  routine  where  groundwater  recharge  and  actual 

evaporation are computed as functions of actual water storage, a response routine 

with  three  linear  reservoir  equations,  and  a  routing  routine  using  a  triangular 

weighting function (Marc, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.13: Schematic structure of HBV-Light model (Seibert, 2005) 
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Snow routine 

Precipitation  is  simulated  to  be  either  snow  or  rain  depending  on  whether  the 

temperature  is  above  or  below  a  threshold  temperature,  TT  [°C]  (SMHI-2008 

manual  version  6.2.).  Input  data  are  daily  air  temperature  and  precipitation.  The 

output is the effective precipitation as rainfall and snowmelt which is fed as input 

into the soil moisture routine. Since the study area does not experience any snowfall 

during the year, hence this component was avoided. 

Soil Moisture Routine 

It is in the soil moisture subroutine that effective rainfall is fed into the soil moisture 

routine and runoff formation occurs against the actual evapotranspiration. It depends 

upon the soil infiltration rate and intensity of rainfall based on three parameters. Beta 

(β), FC, and LP.  β controls the contribution to the response  function from each 

millimeter of rainfall. Depending on the relation between maximum soil moisture-

holding capacity [FC] and simulated soil moisture [SM], recharges will be 

generated.  If  the  infiltration  rain  satisfies  the  soil  moisture  it  will  produce  the 

recharge otherwise it will percolate to the lower zone 

𝑅 = 𝐼𝑁 ∗
𝑆𝑀

𝐹𝐶

𝛽

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.12) 

Where: - R is recharge [mm], IN is infiltration [mm], SM is simulated soil moisture 

content[mm], FC is field capacity β is a beta empirical coefficient. Direct runoff has 

a direct relationship with soil infiltration where simulated soil moisture is inversely 

related to the max soil moisture-holding capacity. 

𝐶𝑓 = 𝐶𝑓𝑙𝑢𝑥 ∗ [
𝐹𝐶 − 𝑆𝑀

𝐹𝐶
] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.13) 

Where: - Cf is capillary firing and Cflux is correction value capillary firing. The soil 

water either rises upward as capillary rises or percolates to deep lower zone depend 

on soil available water content. 

Response routine 

Runoff from the groundwater boxes is calculated as the summation of two or three 

linear outflow equations based on the threshold SUZ [mm]. A fast, a slow, and a 

very slow runoff component that is influenced by recession coefficients KO, K1, 

and K2. The fast component Q0 contributes only to a runoff if a threshold parameter 

UZL in water storage is exceeded (Seibert, 2005). 
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𝑄0 = 𝐾 0 ∗ 𝑢𝑧 [1+𝛼 ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3.14)  

Where: - 𝑄0  is a quick runoff, K0  is recession coefficient and UZ is storage in the 

upper zone and α is Alfa (measure from non-linear of flow in the quick runoff). 

Base Flow Routine; The lower reservoir zone contributes to base flow and depends 

on its storage depth. 

𝑄1 = 𝐾1 ∗ 𝐿𝑍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (3.15)  

Where 𝑄1  is delay/base flow, 𝐾1  is recession coefficient and LZ is lower zone 

storage from the upper zone through percolation. 

𝐸𝑎 = 𝐸𝑝 (
𝑆𝑀

𝐿𝑃∗𝐹𝐶
, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.16)    

3.3.8 HBV-Light Model Input data setup 

The HBV-Light model requires a time series of daily rainfall, daily temperature, and 

long-term potential evapotranspiration together with the daily time series of 

streamflow for calibration. Areal rainfalls for each of the catchments were computed 

multiplying  by  the  weight  of  each  station  considered  in  the  analysis  from  the 

Thiessen  polygon.  Precipitation-temperature-discharge  (PTQ)  file  was  prepared 

externally  with  format  file.txt  and  imported  into  the  model.  Daily  estimates  of 

rainfall  (mm),  average  daily  temperature (℃)  per  sub-basin,  and  observed  daily 

streamflow in (mm/𝑑𝑎𝑦)  for the same time baseline (1987-2010) of the two datasets 

together with long-term potential evapotranspiration (mm/day).  

Catchment data 

Since  the  HBV-light  model  works  as  a  semi-distributed  conceptual  model,  the 

whole basin is divided into different sub-basins, from a digital elevation map of the 

area prepared using Shuttle Radar Topography Mission (SRTM) with a resolution 

of 30 m x30m. The areal average rainfall was calculated as a weighted mean of 

precipitation  stations  in  and  around  the  catchment  using  the  Theisen  polygon 

method in equation 3.10. 

1

...............................................................................................(3.17)
n

i t
areal

i t

R A
R

A=
=   

Where : Ri  is the rainfall at station i  Ai is the polygon area of the station i  At  is the 

total catchment area and n the number of stations. 
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For estimation of long-term potential evapotranspiration, commonly used methods 

are the Penman-Monteith method (Penman, 1948), the Priestley-Taylor  method, 

(Priestley & Taylor, 1972), and the Hargreaves method (Hargreaves, 1975) with 

different data requirements. The Penman-Monteith method is recommended as the 

sole method for determining reference evapotranspiration (ETo) when the standard 

meteorological variables including air temperature, relative humidity, and sunshine 

hours data are available (Djaman et al., 2018). However, in the study basin, those 

data are not available in all stations. Therefore, Potential evapotranspiration, ET o 

(mm d 1̄) was calculated by using the Hargreaves method since most of the stations 

have maximum and minimum temperature in all stations (Hargreaves,1985). The 

FAO-56 Hargreaves equation for daily computation is given by 

ETo = 0.0023 [Ta + 17.8 ] ∗ √  Tmax − Tmin ∗ Ra. . . . . . . . . . . . . . . . . . . . . . . . . (3.18) 

Where: -T max (°C) is the maximum daily temperature, T min (°C) is the minimum 

daily air temperature, Ra (MJ m-2 d-1) is the extraterrestrial solar radiation. 

Ra = Rs[ kT(Tmax − Tmin)] 0.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.19) 

Where: -RS is extraterrestrial solar radiation [mm/day] and can be obtained from a 

table  (Samani,  2000).  KT  empirical  coefficient  recommended  0.17  for  semi-arid 

regions. The parameters an (mm/day) and b are calibrated coefficients, determined 

on a monthly or yearly basis by regression analysis or visual fitting. 

3.3.9 Sensitivity analysis of CFSR and meteorological data 

For this study, sensitivity analysis was carried out manually by changing the value 

of  one  model  parameter  at  a  time  in  such  a  way  that  the  value  of  each  model 

parameter was increased and decreased up to 60% by 20% interval and those having 

steep slopes are most sensitive parameters while those having moderate to gentle 

slopes are less sensitive. As described in Table 3.2, the Parameter range considered 

in sensitivity analysis for the model was recommended by (Jillo et al., 2017), who 

previously analyzed the parameters in the specified range in this study basin. HBV-

light  model  parameters  can  be  grouped  into  (Soil  Moisture  Routine  or  volume 

controlling) (FC, LP, and Beta) that influence the total volume and shape controlling 

parameters or response routine (K0, K1, K2, PERC) that distribute the calculated 

discharge in time and MAXBAS (routing routine). 
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3.3.10 Model Calibration  

Manual calibration has been carried out for optimization and development of parameter 

sets  of  the  HBV-Light  model.  CFSR  and  ground  observed  data  were  individually 

calibrated for daily time series of 15 years (1989-2003) and validated for 7 years (2004 

– 2010), while 1987 -1988 was used as a warm-up period. The manual calibration has 

been reported in Abdella (2016) to be the best option for turn-by-turn fine-tuning of 

parameters  and  allowing  each  model  parameter  to  be  changed  at  a  time  and  obtain 

optimized  parameters  sets  within  the  defined  boundary  conditions  and  therefore 

reducing the uncertainties, obtain the best fit between simulated and observed response 

characteristics, Parameters space  considered in  the sensitivity analysis based on the 

recommendation by (Jillo et al., 2017),  who previously analyzed the parameters of the 

specified range in this study area. 

Table 3.2: Parameters range used in the sensitivity analysis 

 

Table Description unit Minimum 

value 

Maximu

m value 

References 

                   Soil routine    Worqlul et al. 
(2017)  

FC maximum soil moisture storage mm 50 750  

LP soil  moisture  value  above  which 

AET reaches PET 

- 0.1 1 (Seibert,   2005). 

BETA Shape coefficient - 0.1 5  

                Response routine    Hundecha & 
Bárdossy (2004) 

UZL Threshold parameter mm 0 50  

PERC threshold parameter d¯1  1 25  

K0 storage (or recession) coefficient 0 d¯1 0 1 (Jillo et al., 2017)  
 

K1 storage (or recession) coefficient 1 d¯1 0.01 0.4 Parajkaet 
al.(2005) 

K2 storage (or recession) coefficient 2 d¯1 0.001 0.15  

            Routing routine     

MAXBAS                length of  a triangular 

weighting function 
  d   1 7 (Jillo et al., 2017)  
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3.4 Model Performance Evaluation 

The Nash and Sutcliff Simulation Efficiency criteria (ENS), Correlation coefficient 

(R²), and Percent bias (PBIAS) were used to evaluate the performance of the HBV 

model in predicting the observed streamflow at each catchment for both data sets 

as defined in equation 3.7, 3.8 and 3.9 respectively. The ENS has been commonly 

used in many rainfall-runoff modeling to account for model errors in estimating the 

mean of the observed datasets. ENS  allows the  model to be compared  with the 

initial variance that is demarcated by the observed datasets (Nash and 

Sutcliffe,1970). The two datasets were validated independently from 2004 to 2010 

at  Gilgel  Gibe,  Tunjo,  Upper  Great  Gibe,  Gojeb  and  from  1999  to  2007  at 

Warabessa, Walga, Wabe Guma-Denchya, and Gorombo based on the same criteria 

range in Table 3.2.  

3.4.1 Physical Catchment Characteristics (PCCs)  

Streamflow dynamics is a function of physical catchment characteristics (PCCs) 

and these PCCs were mainly related to land use, soil type, climate, and topography. 

The main point here was to evaluate the relation between model parameters and 

PCCs  since  one  model  Parameter  may  be  affected  by  more  than  one  PCCs. 

Therefore, the relations between HBV model parameters and (PCCs) were obtained 

from simple and multiple linear regressions together with Principal Components 

Analysis.  The  sensitivity  analysis  has  played  a  role  in  the  investigation  of  the 

relationships between model parameters and physical catchment characteristics.  

For testing the regionalization approach the range of physical catchment attributes 

were collected. These physical catchment characteristics (PCCs) used in 

developing regression equations were shown in Table 3.3 and the indices of PCCs 

for each catchment are detailed in Appendix C. The PCC collection was inclusively 

based on previous regionalization studies in the study area and the availability of 

the data in the basin. Nineteen catchments including ungauged  catchments each 

consisting physical characteristics of seven topographical descriptors, three 

climatic factors, three soil descriptors, four vegetation descriptors (see Appendix 

D).  
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Table 3.3: Physical Catchment Characteristics (PCCs) used in the regionalization 

 

3.4.2 Principal component analysis (PCA)  

PCA has been carried to the correlation matrix of the above PCCs in order to obtain 

Principal components and reduce any insignificant dimensions in the PCCs through 

the following steps:  

 
 
PCC                                                            

 
 
Unit 

                
 
Symbol 

 
Physiographical descriptors 

Digital elevation model m DEM 

Average catchment slope % S 

Catchment area Km² DA 

Aspect - Aspect 

Topographic wetness index - TWI 

Flow direction - FD 

Flow accumulation - FA 

Length of longest flow path KM LLP 

 
Climate descriptors 

Average Annual Rainfall mm MAR 

Average Annual Potential Evapotranspiration mm PET 

 
Soil descriptors 

Average Soil Available Water Content cm/m S_AWC 

Average Soil Bulk Density Kg/dm² S_BD 

Average Soil Permeability m/s SAT_K 

 
Land cover descriptors 

Average Normalized Difference Vegetation 
Index 

- NDVI 

Percent Cultivation land % % CL 

Percent Forest land % % FL 

Percent Grass land % % GL 

 
Principal components from PCA 

Principal Component 1 - PC1 

Principal Component 2 - PC2 

Principal Component 3 - PC3 

Principal Component 4 - PC4 

Principal Component 5 - PC5 

Principal Component 6 - PC6 
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Step 1, Data standardization:  The indices of PCCs were  first standardized (zero 

mean) to ensure scale comparability and allow for the equal contribution of each 

variable in the transformation of the data obtained from measurements of different 

units.  

Step 2, Investigation of the fitness of the PCCs for PCA:  

The existence and dominance of common hydrological features that existed among 

the datasets were assessed through the analysis of covariance matrix using Kaiser–

Meyer–Olkin  (KMO)  measure  of  sampling  adequacy  and  the  ratio  of  partial 

correlation to multiple correlations.  

 Setp3:  The  sphericity  of  data  was  checked  using  Bartlett’s  method  to  test  the 

suitability  of  the  data  for  PCA  in  such  a  way  that  the  factors  can  reveal  the 

variability found in the data for a significance level of 95% (p < 0.05) and therefore 

the rejection of the null hypothesis. The table in appendix E also shows the inter-

correlation matrix among some physical catchment characteristics and it’s 

worthless to directly regress the PCCs on the model parameters without solving the 

multicollinearity  problem  using  the  PCA  application.  From  table  3.3,  the  KMO 

scores 0.728 with Bartlett’s test of sphericity at 95% significance level and showing 

the fitness of the dataset for PCA (there existed collinearity among the datasets).  

 

Extraction of underlying hydrological features: PCA was then carried out to obtain 

the new principal components through varimax rotation using the Kaiser’s 

eigenvalue  standards  (principal  components  with  eigenvalues  greater  than  1.00) 

were extracted and reserved for improving the regression model as the 

corresponding eigenvectors of these eigenvalues show the direction of the data that 

Table 3.4: KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.728 

Bartlett's Test of Sphericity 

Approx. Chi-Square 152.311 

df 78 

Sig. .000 
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describe the maximum amount of variance and the lines that detect most abundant 

hydrological information of in the data.   

Therefore, PCA outputted from varimax rotation indicated six principal 

components  with  an  eigenvalue  greater  than  1.00  which  accounted  for  the  total 

cumulative variance of 81%. The contribution of these variables is shown by their 

eigenvalues  in  table  3.5.  The  first  principal  component  (PC1)  contributes  the 

maximum percent of the cumulative variance in the data (31.5%) see table 3.5, The 

second principal component (PCII) contributes 16.5%, PCIII contributes 14. % and 

proceeding until the last Principal component (PC6) which contributes the 

minimum percent of cumulative variance (6.2%). Therefore, this is the way how 

PCA was applied to find the most effective principal components which improve 

the regional model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCA was also applied to find hydrologically homogenous groups of catchments as 

shown in Figure 3.14 which could help to group homogenous catchments in the 

runoff modelling.  
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 Figure 3.14:Group of homogenous catchments classified using PCA 
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But  in  this  study,  all  the  gauged  catchments  were  found  the  same  group  and 

ungauged  catchments  were  found  in  other  group  and  became  very  difficult  to 

extrapolate model parameter with in such hydrologically heterogenous catchments.  

 
 

 

 

 

 

3.5 Regionalization 

In Omo-Gibe River Basin, most of the gauged catchments are located upstream 

while ungauged catchments are located downstream and the attributes of nearby 

catchments are still extremely varied which restricted applying the spatial 

proximity method and similarity of physical catchment characteristics. The study 

area is highly heterogeneous comprising different hydroclimatic, geological, and 

topographical properties which will not generate similar hydrological responses. 

Catchments in the basin for which flow time series are to be estimated have no 

comparable areas  and comparable  PCCs.  thus,  difficult  to  extrapolate  using 

methods other than the regional model method. 

3.5.1 Developing Regional Regression Equation  

HBV model has eight parameters for which regression equations were developed, 

FC,  LP.  BETA,  K0,  PERC,  K1,  K2  and  MAXBAS.  The  regional  model  was 

developed from each parameter that best correlated to some of the indices while the 

other  parameter  correlates  to  other  indices.  Before  the  regionalization  of  model 

parameters  to  ungauged  catchments,  HBV-Light  model  parameters  were  first 

optimized at each gauged catchment as described in section 3.3.8. These parameters 

were  then  subjected  to  be  expressed  as  a  function  of  the  physical  catchment 

characteristics influencing rainfall-runoff processes in the regression model. 

Hydrologically acceptable and statistically optimized correlation between  model 

parameters and catchment features was assessed from the stepwise regression. The 

catchment indices used in developing the model  are shown in appendix  D. The 

multiple regression model was written as:  

Table 3.5: Eigen analysis of the Correlation Matrix 
  

Eigenvalue 5.349 2.8 2.4017 1.5708 1.3238 1.0558 

Proportion 0.315 0.165 0.141 0.092 0.078 0.062 
Cumulative 0.315 0.479 0.621 0.713 0.791 0.853 
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The multiple regression model was written as:  

0 1 1 2 2 3 3 n nY =  +   +   +   +  +   ( )       

Where Y is the predicted model parameter, 1 2 3 n         are the set of catchment 

characteristics, 0 the intercept of the regression line, 1 2 3 n         the coefficients 

of catchment features. The overall relation and strength of the above regression 

equation were tested and selected based on the coefficient of determination, the p-

value, and the student’s t-test. 

 



 

63 
 

CHAPTER 4 RESULTS AND DISCUSSION 

In this chapter, the findings of the study were presented for each of the objectives 

proposed in the general objective section. The results were described step-wise with 

a brief discussion in reference to other scientific works. 

4.1 Comparison of the areal CFSR and ground observed datasets 

The correspondence between the areal CFSR precipitation estimates and ground 

observed data were analyzed for each catchment (see Figure 4.1.1.) assuming the 

ground observed estimates to be the truth. The results of a comparison using the 

statistical tests as Coefficient of determination (R²), The Nash-Sutcliffe efficiency 

(ENS)  and  the  categorical  tests,  the  Probability  of  Detection  (POD),  the  False 

Alarm ratio (FAR) were listed in table 4.1 and 4.2 respectively. 
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Figure 4.1: Monthly comparisons of the two rainfall datasets (1987 - 2010) 
 

CFSR  data  reflected  more  than  70%  of  the  observed  variance  in  daily  rainfall  of 

ground observed data at Tunjo, Upper Great-Gibe, Gilgel-Gibe, Gojeb, and Guma - 

Denchya.  At  Walga,  Wabe,  Gorormbo,  and  Sokie-Waybe  catchments.  The  daily 

performance of CFSR have shown reasonable correlation to the spread of the observed 

rainfall. At Demie and Zage catchments, the CFSR however poorly correlated to the 

observed data for their poor records of the ground observed rainfall data have affected 

the  performance  analysis.  The  application  of  linear  scaling  bias  correction  here 

slightly  improved  the  efficiency  of  CFSR  data  as  shown  in  Figure  4.1.  Therefore, 

CFSR  data  have  generally  shown  good  performance  in  representing  the  weather 

condition of the study basin comparatively to the studies of  (Berhanu et al., 2016). 

The difference is the way of comparison as they evaluated CFSR data based on the 

point-to-point comparison, but in this study, the CFSR data was evaluated based on 
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an  areal  basis.  CFSR  rainfall  estimates  are  continuous  and  represent  areal  rainfall 

while ground observed rainfall data was obtained from a station measurement at a 

particular point in location, the use of point data to evaluate gridded climate products 

have great variation.  

Table 4.1: The comparison using statistical metrices  

Catchments 
Raw. CFSR  Corr. CFSR 

ENS R² 
PBIAS 
(%) 

ENS R² 
PBIAS 
(%) 

Upper Great- Gibe 0.8 0.75 -15 0.85 0.84 -11 

Warabessa 0.65 0.66 -13 0.68 0.69 -9 

Tunjo 0.92 0.91 0.18 0.93 0.95 0.1 

Gilgel-Gibe 0.73 0.70 -17 0.74 0.75 -8 

Lower Great Gibe 0.68  0.65 -15 0.70 0.71 -12 
Walga 0.71  0.71 11 0.75 0.72 9 
Wabe 0.65  0.65 -12 0.68 0.69 -9 
Guma-dincha 0.75  0.83 12 0.76 0.78 11 
Sokie-waybe 0.69  0.67 -7 0.65 0.69 - 8 
Gorombo 0.55  0.6 -20 0.65 0.7 -17 
Gojeb 0.7  0.7 -12  0.72 0.7 -7 
Demie 0.6  0.62 11 0.65 0.7  7 
Zage 0.54  0.56 -15 0.57 0.59 -11 

 

    Table 4.2: The comparison using categorical metrices 

 

 Catchments 
Raw CFSR Corr.CFSR 

POD FAR POD FAR 
Upper Great- Gibe 0.90 0.02 0.90 0.02 

Tunjo 1.00 0.03 1.00 0.03 
Warabessa 0.80 0.30 0.80 0.30 

Gilgel-Gibe 0.75 0.10 0.75 0.10 

Lower Great Gibe 0.80 0.20 0.80 0.20 

Walga 0.91 0.04 0.91 0.04 

Wabe 0.90 0.04 0.90 0.04 

Guma-dincha 0.70 0.00 0.70 0.00 

Sokie-waybe 0.50 0.10 0.98 0.10 

Gorombo 0.70 0.10 0.98 0.10 

Gojeb 0.80 0.08 0.90 0.08 

Demie 0.67 0.15 1.00 0.15 

Zage 0.60 0.10 1.00 0.10 
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CFSR showed good quality in Rain Detection (high POD) and the False Alarm Ratio 

falls in the range of 0.01 to 0.3. The southern catchments (Lower - Omo), where 

CFSR has shown a slight overestimation (high FAR). Lower – Omo is a floodplain 

with  a  hot  arid  climate  where  the  dry  mass  of  air  could  result  in  high  lifting 

condensation levels. Raindrops have to pass via a warm atmosphere before reaching 

the  ground  and  cause  substantial  evaporation  at  a  potential  level  in  the  dry 

atmosphere underneath the cloud base and result in high FAR. Thus, although these 

clouds may not produce rain at the surface, the satellite sensors may detect rain, 

leading slightly to the observed large FAR values.  

Therefore, The R² and ENS value between the ground observed rainfall and CFSR 

monthly  average  precipitation  was  larger  than  0.60  at  all  nine  meteorological 

catchments from 1987 to 2010, which showed that the CFSR weather data provide 

accuracy to build the HBV hydrological model.   

4.2 Runoff simulation results in the Omo-Gibe River Basin  

The performance of CFSR data in predicting stream flow through calibration and 

validation to the HBV-light model was tested. The daily runoff simulations at nine 

gauged catchments and the performance indicators are shown in table.4.5. 

4.2.1 Sensitivity analysis of HBV-Light model  

LP, and BETA show a significant effect at all catchments based on both performance 

indicators (ENS and R²). These parameters were highly sensitive and a slight change 

in their value impacted in reshaping the hydrographs changing the volumes and peak 

flows. Fewer sensitive parameters were FC, K1 and MAXBAS. Insensitive 

parameters  were  PERC  and  K0.  Similar  results  were  observed  in  the  study  of 

Temesgen, (2019) where FC, LP, and BETA were found the sensitive parameters. 

K1 and MAXBAS were moderately sensitive for their optimized parameters. It’s 

also observed that the sensitivity level of a model parameter varies from catchment 

to catchment. i.e., the percentage of sensitivity of parameters for each catchment is 

different in relation to the physical catchment characteristics of each catchment. The 

optimized model parameters of CFSR data and ground observed data have 

comparable values except for FC and LP. 
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Figure 4.3 shows the sensitivity analysis of both CFSR and ground observed rainfall 

data at Tunjo, Gojeb, and Gilgel-Gibe catchments, where evapotranspiration is high 

and therefore LP is a highly sensitive parameter. CFSR predicted the water balance 

components at Gojeb catchments, that a substantial portion of the moisture is lost by 

the evapotranspiration and resulted in less runoff and changes the efficiency of the 

model by reducing the simulated mean annual runoff as the soil moisture is lost by 

evapotranspiration. In connection to LP, FC and BETA are also sensitive parameters 

as they all are in the soil routine.  
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Figure 4.2: Sensitivity analysis  
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The  optimized  parameter  values  of  CFSR  data  and  ground  observations  in  the 

simulation of flow are shown in Table 4.3 and Table 4.4 respectively.  

Table 4.3: Optimized parameter values at gauged catchments (1989-2006). 

    

 Catchments 
The optimized model parameter sets of ground rainfall data-driven 
HBV model 

                                                  

Model parameters FC LP Beta PERC UZL k0 k1 k2 MAXBAS 

Great Gibe @Abelty 300 1 1 2 20 0.2 0.1 0.05 1 

Walga 300 0.8 2 5 20 0.1 0.1 0.1 7 

Warabessa   250 0.01 2 20 5 0.05 0.05 0.09 4 

Tunjo 350 1 1 4 20 0.001 0.02 0.02 1 

Wabe  130 1 0.2 2 15 0.05 0.05 0.05 1 

Gorormbo  180 0.45 1 5 10 0.045 0.045 0.05 5 

Gilgel-Gibe  550 0.8 2.5 5 50 0.05 0.04 0.05 7 

Sokie-weybo 450 0.4 2.5 10 45 0.05 0.1 0.1 5 

Demie 520 1 1.5 5 15 0.05 0.02 0.02 4 

Guma @ Dincha 450 1 1 3 20 0.05 0.05 0.05 7 

Gojeb  500 1 0.7 15 25 0.05 0.05 0.1 4 

 
Table 4.4: Optimized model parameter from CFSR data  

 
 

 
Catchments 

 

 Best-fit model parameter sets of CFSR data-driven HBV model  

Model parameters FC LP Beta PERC UZL k0 k1 k2 MAXBAS 

Great Ghibe nr 
Abelty 

350 0.4 1.2 3 25 0.05 0.045 0.045 6 

Walga 350 0.7 4 5 30 0.01 0.02 0.035 4 

Warabessa 300 0.5 0.5 5 10 0.3 0.02 0.06 7 

Tunjo 400 1 0.6 5 20 0.045 0.045 0.05 5 

Wabe 300 1 1.5 1 20 0.2 0.1 0.05 5 

Gorormbo 225 0.5 1.5 5 20 0.04 0.04 0.04 4 

Gilgel-gibe 650 0.7 2.5 5 10 0.04 0.035 0.035 5 

Sokie-Weybo 450 0.5 2.5 5 25 0.05 0.1 0.05 4 

Demie 400 1 2 5 20 0.01 0.01 0.01 5 

Guma -dincha 500 1 1 3 45 0.2 0.1 0.05 7 

Gojeb 650 0.8 1 5 20 0.045 0.01 0.15 6.5 
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The field capacity (FC) of the calibrated model using CFSR data was slightly larger 

than the FC value of the model calibrated by gauged rainfall data in all catchments. 

This could be due to higher rainfall estimation in the CFSR data. Similar results were 

observed in sensitivity analysis of CFSR data-driven model in the study of Worqlul 

et  al.,  (2015)  that  the  soil  retained  greater  quantities  of  water  and  released  it 

afterward  by  evapotranspiration  and  base  flow  compared  to  the  gauged  flow 

simulation as compared to the gauged. Hence, to reduce parameter uncertainty in the 

calibration of the model, great attention has been given for the sensitive parameters 

during  the  establishment  of  a  regional  model  which  addresses  all  aspects  of  the 

hydrographs in addition to objective functions 

4.2.2 HBV-Light model Daily calibration and validation results  

HBV-Light model was calibrated at gauged catchments where streamflow has been 

well updated for calibration of the model. The model has remarkably predicted the 

observed runoff using CFSR rainfall as input at Upper Great Gibe, Tunjo, Gilgel-

Gibe, and Gojeb.  

CFSR driven model was able to simulate the water balance components as well as 

the peak flows better than the observed rainfall-driven model. This was previously 

expected and described in subsection 4.1.1 as CFSR data captured more than 70% 

of  the  variance  of  the  ground  observed  data  even  the  raw  CFSR  (without  bias 

correction) have resulted in good efficiency. Figure 4.2.2 and Figure 4.2.3 show a 

sample daily calibration and validation result of the HBV model at Tunjo and Gilgel-

Gibe catchment.  
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The Great-Gibe watershed is very large and covering a drainage area of 15746km ² 

with a flow station near Abelty. CFSR was able to reproduce the observed flow in 

such  a  wide  watershed  with  minimum  underestimation  of  the  peak  flows  which 

actually occurred by the rise of water level due to sedimentation problem but still, 

CFSR data predicted the abrupt fluctuation of the peak flows better than the gauged 

rainfall data at this catchment. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

  

    

 

 

Figure 4.4 Daily validation of CFSR data at Tunjo (2005 -2010)  
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Figure 4.5: Daily calibration at Great Gibe  
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The result of HBV model performance in streamflow simulation from CFSR data 

and ground observed rainfall data were described in table (4-4) and table (4-5) based 

on objective functions ENS, R², and PBIAS during the calibration period of (January 

1-1989  to  December  31-  2003)  and  validation  period  of  (January  1-  2004  to 

December 31- 2010) respectively. In some catchments, due to data unavailability, 

the calibration was altered to be started in 1990 and 1992. 

Table 4.5: Result Summary of daily flow simulations using HBV model 

 
Performance of HBV model using meteorological data as an input   
 
Catchments 

Calibration Validation 
R² P BIAS ENS R² P BIAS ENS 

Great -gibe nr Abelty 0.72 -6.73 0.71 0.75 -5.123 0.69 
Tunjo 0.85 3.07 0.85 0.7 -1.75 0.7 
Walga 0.66 -11.57 0.65 0.65 -3.05 0.67 
Warabessa  0.68 7.2 0.66 0.67 7.5 0.68 
Wabe 0.67 -2.37 0.65 0.69 1.6 0.69 
Gorormbo  0.65 -10 0.64 0.68 -10 0.69 
Gojeb 0.77 6.79 0.76 0.75 9.85 0.75 
Gilgel-Gibe  0.8 -9.42 0.79 0.83 -9 0.85 
Sokie-weybo  0.48 6.62 0.45 0.4 10.65 0.42 
Guma @ Dincha 0.67 -5.54 0.67 0.67 13.95 0.66 
Demie  0.5 -15.49 0.5 0.42 -10.95 0.39 

 

Table 4.6: Summary of HBV model daily simulation result 

 

 
Performance of HBV model using CFSR data as an input 

 
Catchments 

Calibration                                    Validation 
 

R² P BIAS ENS R² P BIAS ENS 
U/Great- Ghibe nr 
Abelty 

0.75 7.05 0.7 0.74 9.53 0.7 

Tunjo 0.85 -1.1 0.86 0.84 -1.51 0.82 
Walga 0.68 -8.57 0.69 0.68 -5.05 0.66 
Warabessa 0.66 10 0.67 0.66 -9.23 0.65 
Wabe  0.68 -9.07 0.65 0.67 5.13 0.67 
Gorormbo 0.66 -5.32 0.65 0.65 -11.49 0.66 
Gojeb 0.77 6.8 0.76 0.78 5.48 0.78 
Gilgel-Gibe  0.85 10.17 0.8 0.82 10.85 0.83 
Sokie-weybo 0.55 11.23 0.52 0.43 11.65 0.415 
Guma @ Dincha 0.65 8.01 0.66 0.67 9.5 0.7 
Demie  0.51 -7.49 0.5 0.48 -5.95 0.47 
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The  line  plot  of  CFSR  and  ground  observed  rainfall  data  at  all  catchments  (see 

Appendix A and B) were prepared for the comparison of the simulated and observed 

streamflow  and  indicating  the  hydrological  trend  in  the  data  sets  (between  the 

simulated from CFSR data and observed flows, and the ground observed data).  

4.3 The established Regional Model  

For developing a regional model, the optimized parameters at the gauged catchments 

with  relatively  good  performances  during  calibration  were  used.  The  catchments 

(Ajancho, Demie, Zage, and Irgine) were screened out from establishing the regional 

model as their result of the calibration was poor. This could happen be due the sparse 

coverage in the density of ground observation stations calibrated model parameters 

could  not  represent  the  watershed  hydrology  and  consequently  made  the  model 

poorly perform.  

Fourteen physical catchment characteristics (Appendix D of Table 1, Table 2, and 

Table 3): three climate descriptors, three soil descriptors, four vegetation descriptors, 

and four topographical descriptors were prepared to establish the regional model. The 

correlation of each parameter with the above catchment indices was tested. From the 

stepwise regression of each group, by observing the correlation coefficient and the 

physical relevancy of each index to each parameter, those  catchment indices that 

showed good correlation and those that are hydrologically relevant to each model 

parameter regarding catchment response, though didn’t show good correlation, were 

selected and regressed over each model parameter. The final regression equation was 

selected after testing its statistical significance through R², t-test and p-value, and 

hydrological meaning. Therefore, the linear regression equations relating each model 

parameter to the best describing catchment characteristics were shown in Table 4.10. 

There are eight model parameters for which regression equations were developed, 

FC, LP, BETA, ALPHA, PERC, Alpha, K1, K2, and MAXBAS. Accordingly, the 

maximum water holding capacity (FC) was best correlated with flow direction and 

PC1, Limit of evapotranspiration (LP) was correlated with PC5. The shape 

coefficient BETA was best correlated with TWI, Quick runoff coefficient, K0 was 

best correlated with soil bulk density and PC6. Storage coefficient at upper zone, K1 

was best correlated with PC1, PC2, and PC3, likewise, K2 was best correlated with 

drainage  area  and  NDVI,  MAXBAS  was  best  correlated  with  PC1  and  mean 
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elevation. 

Outputs  from  PCA  applying  the  varimax  rotation  indicated  that  six  principal 

components  with  an  eigenvalue  greater  than  1.00  (see  Appendix  D,  Table  4) 

accounted for the total cumulative variance of 81% as per their eigenvalues. The first 

component  has  explained  about  31  percent  of  the  variance  in  the  catchment 

characteristics, while the second component explained 16.5 percent, and therefore 85 

percent of the variance is explained by only the six components. The classification 

has also indicated that the catchment behavior is more influenced by soil, 

topographical, and climate descriptors in the first component. 

Table 4.7: The regional model developed for MPs and PCCs links. 

FC =812.83 - 28.1837 FD + 25.60 PC1  

MP 
                 
Coefficients 

             Stan 
Error         t Stat        P-value 

Intercept 812.8333 94.25109 8.624126 0.000134 
FD -28.1837 8.996605 -3.72133 0.020255 
PC1 25.60588 23.62041 1.084057 0.019967 
LP =   0.7235 + 0.2407 PC5   
Intercept 0.723554 0.062706 11.53879 8.27E-06 
PC5 0.240758 0.102765 2.342797 0.051632 
BETA =   8.4228 - 0.96372 TWI   
Intercept 8.422807 0.994459 8.469741 6.32E-05 
TWI -0.96372 0.134452 -7.16774 0.000183 
Alpha = -0.152825 + 0.000165 ME +0.000093 PET - 0.0884 PC3 
Intercept                    -0.15283 1.294379 -0.12226 0.907455 
Elevation 0.000165 0.00019 0.865134 0.426516 
PET 0.000093 0.000607 0.154376 0.883352 
PC3                     -0.0884 0.048596 -1.8282 0.127062 
Ko = 6.8683 - 5.24401 S_BD - 0.03425 PC6  
Intercept 6.868397 1.958284 3.507355 0.012712 
S_BD -5.24401 1.521305 -3.44705 0.013682 
PC6 -0.03425 0.030698 -10.1159 0.007163 
K1 =   0.374 + 0.11738 PC1 - 0.0 73011 PC2 - 0.08477 PC3 
Intercept 0.373885 0.320551 1.166382 0.096062 
PC1 0.117388 0.197502 0.59436 0.057813 
PC2 -0.07301 0.181283 -0.40273 0.070378 
PC3 -0.08477 0.174567 -0.14861 0.047775 
K2 = 0.034 + 0.0000108 DA - 0.02565 NDVI  
Intercept 0.034586 0.08331 0.415145 0.192472 
DA 1.08E-05 6.43E-06 1.677457 0.014446 
NDVI -0.02565 0.156141 -0.16429 0.087489 
MAXBAS = 12.24 - 0.00304 PC1 - 0.0035 ME 
Intercept 12.24557 2.75224 4.44931 0.004332 
PC1 -0.00304 0.217258 -5.014 0.098928 
ME -0.0035 0.001475 -2.37406 0.055214 

 



 

74 
 

4.4 Validation of the Regional Model  

For estimating model parameters of ungauged catchments, the regional model has to 

be tested for its performance initially. The approach of validating the regionalized 

model consists of applying the regional relationship between the model parameters 

and  the  catchment  descriptors  derived  in  the  calibration  set  of  catchments  to  the 

independent  catchments  within  the  study  area  that  were  not  used  to  derive  the 

regional  relationship.  The  objective  functions  (ENS  and  R²)  defined  during  the 

calibration period were used to compare the predicted discharge from the regional 

model with the observed streamflow. Summary of the performances of the 

regionalized model during the validation period were shown in Table 4.9. A sample 

hydrograph comparing the observed and simulated discharges of the regional model 

which have been tested at Lower Great Gibe catchment is shown in  

  

 

 

 

 

 

 

 

 

 

Figure 4.7: Comparison of the stream flow simulation 

The performance of the regionalized model in the validation catchments in terms 

of the Nash-Sutcliffe coefficient show only a slight difference from its 

performance during the calibration period. This could happen due to the fact that 

the ranges in the validation catchment descriptors used to validate the regional 

model found within the corresponding ranges of the descriptors in the of 

catchments  calibration  set.  However,  at  Nerie  gauge  near  Jinka  town  (Lower  -

Omo) where some of the descriptors (mean annual rainfall, mean annual 

evapotranspiration, mean elevation, normalized difference vegetation index, soil 

moisture)  were  vary  from  the  calibration  set  but  still  the  performance  of  the 

regionalized model in such catchment was found to be satisfactory showing as one 
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option for applying the regional relationship for extrapolation of the catchment 

descriptors outside the range within which they were derived.  

Table 4.8: Model parameters predicted at the gauged catchments 

 

Table 4.9: Validation of the regionalized model at validation catchments (2008 - 2010) 
 
 
Performance Summary of the regionalized model at validation catchments 

 
Gauging stations 

 
Area (sqm) 

 
Catchments 

 
ENS 

 
R² 

Upper  Great  Gibe  near 
Baco 

288.1 Upper Great Gibe 0.52 0.65 

Gibe near Seka 280.4 Tunjo 0.66 0.8 

Lower Great Gibe near 
Hossaina  

 
4228 

 
Lower Great Gibe 

0.64 0.79 

Kulit near Tedele 350 Walga 0.5 0.63 

Sheta near Bonga 190.4 Gojeb 0.57 0.69 

 Nerie near Jinka 166 Lower - Omo 0.55 0.65 

 

4.5 Flow estimation at the ungauged catchments  

After validating the regionalized model at the gauged catchments, the established 

regional model was used to predict the model parameters of ungauged catchments 

using their corresponding PCCs. A total of eleven ungauged catchments (Lower 

Great Gibe, Demie, Zage, Irgene, Upper-Omo, Sharma, Middle Omo, Mey-Kako, 

Model Parameter FC LP BETA ALPHA k0 K1 k2 MAXBAS 

Upper 
Great Gibe 

344.25 0.55 1.2 0.22 0.03 0.15 0.08 6 

Tunjo 327.69 0.79 0.62 0.14 0.07 0.02 0.05 5 

Walga 523.54 0.77 3.8 0.1 0.07 0.01 0.05 5 

Wabe 272.38 0.92 1.39 0.25 0.1 0.14 0.05 4 

Gorormbo 280.69 0.86 0.91 0.46 0.06 0.17 0.03 4 

Guma- Dincha 594.22 0.92 1.2 0.13 0.21 0.11 0.06 7 

Gilgel-Gibe 591.73 0.6 1.68 0.19 0.01 0.28 0.08 5 

Gojeb 613.3 0.65 0.91 0.26 0.09 0.22 0.09 6 

Warabessa 577.2 0.53 0.52 0.2 0.29 0.23 0.04 6 
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Kibish, Lower-Omo) representing 45 % of the basin area. Three of which are 

catchments with the unsatisfactory result during calibration while the remaining 

are totally ungauged and no hydrological data at the outlet. The aim of correlating 

catchments characteristics to model parameters and developing regional 

regression equation was described in detail above and the predicted hydrograph 

for each ungauged catchment was shown in (Appendix C) using the established 

regional model.  

 

 

 

 

 
 
Figure 4.8: Hydrograph at the Sharma catchment (Ungauged catchment) 
 
Table 4.10: Model parameters derived for ungauged catchments  
 

 

 
Catchments 

 
FC 

 
BETA 

 
LP 

 
ALPHA 

 
k0 

 
K1 

 
K2 

 
MAXBAS 

L/great gibe 393.34 1.49 0.75 0.23 0.56 0.25 0.07 4.84 

Demie 546.65 3.76 0.11 0.53 0.85 0.22 0.04 5.00 

Zage 480.74 0.86 0.37 0.56 0.85 0.29 0.05 3.92 

Irgene 520.45 1.53 0.75 0.62 0.53 0.22 0.04 6.44 

ajancho 365.54 0.68 0.86 0.50 0.56 0.50 0.05 6.48 

Upper-Omo  489.59 1.32 0.90 0.35 0.50 0.33 0.08 5.80 

Sharma 665.47 0.70 0.80 0.07 0.14 0.33 0.07 5.48 

Middle-
Omo 

582.90 0.04 0.56 0.10 0.68 0.48 0.09 3.75 

Kibish 543.83 1.39 0.55 0.26 0.08 0.46 0.07 4.01 

Meki-kako 256.95 0.23 0.96 0.26 0.06 0.51 0.08 4.33 

Lower-Omo 548.16 0.52 0.44 0.19 0.36 0.34 0.13 3.07 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The  main  focus  of  this  study  was  evaluating  the  performance  of  wide  area 

covering  satellite  rainfall  product,  Climate  Forecast  and  System  Reanalysis 

(CFSR) data as an input to a semi-distributed hydrological model (HBV-Light) 

and flow estimation at ungauged catchments using CFSR data driven HBV-Light 

model in Omo-Gibe River Basin, Ethiopia.  

Initially, the correlation of the CFSR and the meteorological data was evaluated 

at  each  catchment  based  on  ENS,  R², PBIAS  efficiency  criteria.  The  rainfall 

occurrence  detection  capacity  of  CFSR  data  was  also  tested  using  categorical 

descriptors (POD and FAR).  

From the direct comparison performance evaluation, it could be concluded that 

the daily areal estimates of CFSR data were observed to better correlate to the 

ground  observed  average  areal  rainfall  data  at  well-recorded  catchments.  The 

runoff predictive performance of the CFSR data driven HBV- Light model was 

validated to the observed discharges at gauged catchments and concluded to be a 

good performance model.  

Based on the performance evaluation statistics used (R², NSE, and PBIAS), the 

CFSR data well simulated the daily streamflow as the ground observed rainfall 

data at the Upper Great Gibe near Abelty, Tunjo, Gilgel-Gibe, Gojeb, and Walga 

catchments.  At  Guma-Denchya,  CFSR  data  driven  HBV-Light  model  better 

simulated the streamflow than ground observed rainfall data driven HBV-Light 

model.  Therefore,  it  could  be  concluded  that  for  better  performance  of  HBV-

Light model using CFSR data, the model parameters should be optimized through 

CFSR  data  itself  (Table  4.5)  rather  than  copying  the  optimized  set  of  model 

parameters from ground observed rainfall data driven HBV-Light model (Table 

4.6), that is called direct calibration and validation of the HBV-Light model using 

CFSR data.  

The simulation by the CFSR data driven HBV-Light model was able to capture 

the peak flows better than the runoff simulation by the gauged rainfall. So, the 

CFSR data can be suitable to predict extreme events when using HBV models. 



 

78 
 

Therefore, it could be concluded that CFSR data can be the best alternative data 

for River Basin modeling,  

The performance of daily streamflow simulation from the CFSR climate data at 

larger watersheds (Great Gibe with drainage area of 15746 km ²) demonstrated 

that CFSR data can simulate the stream flow at the larger catchments using HBV-

Light model. The observed versus simulated streamflow hydrograph analysis at 

each  catchment  using  HBV-Light  model  (Appendices  I  and  II)  indicated  that 

CFSR data can predict the seasonal patterns of rainfall occurrences and the timing 

(the unimodality of the rainfall regime at the northwestern catchments and the 

bimodality of rainfall in the southern (ungauged catchments).  

The CFSR calibrated model can be used for further analysis of the streamflow 

responses to land use and climate changes and different management scenarios 

using the HBV- Light model. 

The regional model was validated independently at gauged catchments that were 

not used in deriving the regional relationship between the model parameters and 

the catchment descriptors and found to be satisfactory for the flow estimation at 

ungauged  catchments.  However,  the  model  works  for  extrapolation  of  model 

parameters to catchments of descriptors within the range considered in deriving 

the regional relationships, for larger extrapolation, the model may not be robust 

and the prediction could be uncertain.  

The  poor  performance  of  the  regionalized  model  could  be  raised  from  the 

anthropogenic activities in the basin which has an important implication on the 

runoff  generation  and  the  regional  model  of  this  study  has  not  built  by 

considering  anthropogenic  influences  that  led  to  the  occurrence  of  different 

runoff  generation  dynamics  within  the  catchment  to  regionalize  the  model 

parameters. The anthropogenic influences are the natural and human activities 

such as damming, construction of water retention structures, urbanization, and 

catchment change and increased abstraction of water for irrigation and 

industries, and impoundment of water. 
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The regional model is area specific. i.e., applicable only for the study area they 

are established for and within the time boundary but the procedure can be applied 

to other regions. 

5.2   Recommendations 

Having  all  the  findings  and  evaluations  in  the  previous  section,  the  following 

recommendations are broadened for future studies.  

CFSR climate data provides complete sets of continuous, areal, climatic datasets 

for hydrological modeling. These datasets are the best choice for their simplicity 

to  be  obtained  and  used  for  different  functions  for  hydrological  models  in 

providing all climate variables that are essential for the calculation of potential 

evapotranspiration  using  Penman-Montieth,  as  some  of  these  data  are  being 

absent in ground observations. 

CFSR data, one of satellite rainfall estimate can be subjected to a variety of error 

sources and the errors in data assimilation, poor association to remotely sensed 

signals and atmospheric properties that influence the radiation flux. Therefore, 

it’s good to check for and adjust the bias in the CFSR data in reference to ground 

observed rainfall data of its corresponding catchment before applying it to the 

hydrological model. 

Future study should improve the accuracy the regional model using more data 

sets that were not included in this study such as data on anthropogenic activities, 

geological and mining activities, etc. Further improvement of estimation of the 

parameters may be carried out by incorporating other catchment descriptors. This 

may recommend a way for future parameter regionalization works.  

In this study, PCA is carried out linearly to extract the principal components from 

physical catchment characteristics. Further study is necessary to consider another 

classification  method  that  can  nonlinearly  improve  the  PCA  model  structures. 

The transfer function relating the model parameters with the catchment attributes 

was set to have a linear form in this study. Future study would test other nonlinear 

forms of transfer functions with a comprehensive uncertainty analysis included. 
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The correlation between model parameters especially non-sensitive model 

parameters  (Percolation)  needs  a  geological  set  of  data  for  the  rainfall-runoff 

modeling from a large number of gauged catchments. Care should be taken while 

interpreting the hydrological meaning of parameter descriptor relationships found 

by  regressions  as  high  correlation  coefficient  doesn’t  assure  the  hydrological 

relationship between model parameters and catchment descriptors. 

The gauged catchments are found in the northern and northwestern parts of the 

basin and there are no representative catchments in the southern and southwestern 

part of the basin yet there is considerable variation in PCCs from northwards to 

southwards, these challenged for application of model transfer and the regional 

model development needs further studies using different hydrological models.  
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          APPENDIX A 

Observed and simulated flow hydrograph of HBV-Light model using 
CFSR  and  ground  observed  climate  data  as  an  input  at  the  gauged 
catchments. 
 
A: Daily calibration (1988 -1998) 
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 B: Daily calibration (1989-2002) 
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C: Daily calibration (1990 -2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D: Daily calibration (1999 -2005) 
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APPENDIX B 
 
Observed and simulated flow hydrographs of HBV-Light model using CFSR 
and ground observed climate data as an input at the gauged catchments, daily 
validation period (2004-2010). 
 
A: Daily validation (2004 -2010) 
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B: Daily validation (1999 -2005) 
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C: Daily validation (2002 -20007) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D: Daily validation (2006 -2010) 
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APPENDIX C 
Figure A: Flow generated at ungauged catchments applying the regionalized 
model using CFSR data as an input data for the period of (1988 to 2000). 
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Figure  B:  Flow  generated  at  ungauged  catchments  applying  the  regionalized 
model using CFSR data as input data for the period of (2001 to 2010). 
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APPENDIX D 
Table 1. Physical Catchment Characteristic indices that were used for nine gauged 
and ten ungauged catchments, as described in Table 3.3. 

Catchments        
DA 

       
ME 

        
LLP 

        
TWI 

      
LS 

  
Aspect 

Great Gibe 5272 1918 215 7.5 13.76 174 
Tunjo 2421 2043 162 8.1 14.81 188 
Walga 2829 2039 89 4.8 7.81 199 
Wabi 1862 2266 96 7.3 12.17 211 
Gorombo 1116 2370 70 7.8 7.8 212 
Gumadenchiya 3488 1604 141 7.5 24.79 190 
Gilgel Gibe 5136 2048 231 7 12.13 186 
Gojeb 6699 1868 210 7.8 20.99 174 
Warabessa 1657 1767 30 8.2 13.61 172 
Sharma 5212 1211 180 8.01 18.7 178 
Middle Omo 6392 690 103 8.7 8.52 180 
Meki kako 5574 797 274 8.5 10.2 208 
Kibish 4736 1569 10 7.3 13.4 181 
Lower Omo 9350 600 262 8.2 8.9 180 
Zage 2399 1479 76.5 7.85 21.52 197 
Irgene 1266 1768 81 7.15 34.91 192 
Deme 1807 1731 83 7.96 18.41 190 
Lower- Gibe 4228 1959 114 8.01 16 195 
Sokie-Woybo 2968 1647 36 8.03 18.41 188 
Upper Omo 5580 1373 177 7.37 27.5 191 
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 Table 2: Physical Catchment Characteristic indices that were used for nine gauged 

and ten ungauged catchments, as described in Table 3.3. 

 

 

 

 

 

 

 

Catchment SAT_ K      NDVI % FOREST 
%Grass 
land % CULTIVATION 

Upper-Great 
Gibe 8.37 0.53 11.78806 27.70495 60.50699 

Tunjo 8.02 0.59 28.95172 4.91E-05 71.04824 

Walga 9.32 0.53 7.157542 8.944768 83.89769 

Wabi 9.15 0.39 0 8.53734 91.46266 

Gorombo 10.13 0.5 0 34.01683 65.98317 

Gumadenchiya 9.41 0.69 55.02173 40.23944 4.73883 

Gilgel Gibe 9.26 0.54 19.81473 58.68132 21.50396 

Gojeb 8.27 0.55 55.63591 37.87704 6.487046 

Warabessa 10.33 0.56 15.32258 25 59.67742 

Sharma 9.48 0.63 77.59612 20.1226 2.281279 

Middle Omo 4.96 0.47 59.2283 40.53643 0 

Meki kako 9.3 0.52 76.25926 22.13391 0 

Kibish 4.12 0.45 19.40351 80.59649 0 
Lower omo 8.4 0.4 2.615316 44.88549 0 
Zage 13.2 0.45 5.66426 63.75079 30.58495 

Irgene 13.31 0.45 36.05749 63.94251 0 

Deme 34.8 0.51 22.25459 69.31881 30.68119 

Lower- gibe 15.42 0.43 8.778036 41.11064 50.11132 

Ajancho 14.66 0.49 48.99168 42.83376 8.174558 

Upper Omo 14.5 0.67 17.43546 78.5986 3.965942 
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Table 3: Physical Catchment Characteristic indices that were used for nine gauged 

and ten ungauged catchments, as described in Table 3.3. 

 

 

 

 

 

 

 

 

 

 

Catchments 
                      
FD                          FA       MAR       MAP       AWC SBD 

Great Gibe 16 699 1615 1701 0.15 1.300 
Tunjo 16 719 1788 1773 0.15 1.300 
Walga 8 545 1252 1659 0.14 1.290 
Wabi 16 736 1190 1531 0.14 1.290 
Gorombo 16 580 1152 1544 0.14 1.300 
Gumadenchiya 8 801 1699.5 1735 0.14 1.270 
Gilgel gibe 8 713 1376 1715 0.14 1.300 
Gojeb 8 1209 1675 1703 0.15 1.290 
Warabessa 8 3835 1383 1771 0.13 1.260 
Sharma 8 1065 1530 1822 0.14 1.290 
Middle Omo 8 1271.84 928.6 1874 0.13 1.440 
Meki Kako 16 11925 800 1795 0.11 1.300 
Kibish 8 580.07 948 1777.6 0.12 1.500 
Lower Omo 8 17760 893 1873 0.13 1.440 
Zage 16 518 1192 1688 0.17 1.100 
Irgene 16 440 1522 1571 0.1 1.210 
Demie 16 544 1265 1717 0.17 1.080 
Lower- Gibe 16 5725 1181 1723 0.12 1.200 
Ajancho 16 8388 1279 1779 0.12 1.210 
Upper Omo 8 11483 1400 1780 0.11 1.200 
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Table 4:  Contribution of the variables (PCCs) to each Principal Component 

(%) 

Variables PC1 PC2 PC3 PC4 PC5 PC6 
Area 0.377 -0.052 0.089 -0.055 -0.112 0.307 

elevation -0.38 0.015 0.175 0.08 0.03 0.128 

LLP 0.22 0.024 0.127 -0.432 0.145 0.474 

TWI 0.258 -0.076 -0.208 -0.323 -0.097 -0.355 

LS -0.055 0.479 -0.221 0.146 0.212 0.069 

Aspect -0.207 -0.251 -0.221 -0.121 0.411 0.095 

FD -0.235 -0.116 -0.308 -0.347 0.161 -0.179 

FA 0.27 -0.137 -0.253 -0.162 0.141 0.406 

Prec -0.15 0.43 0.3 -0.124 0.061 0.078 

Pet 0.367 0.071 0.028 -0.107 -0.227 -0.124 

AWC -0.162 0.055 0.159 -0.332 -0.594 -0.06 

SBD 0.243 -0.285 0.302 0.278 0.048 -0.115 

SAT_ K -0.155 0.2 -0.404 -0.223 -0.295 0.085 

NDVI 0.043 0.424 0.263 -0.131 0.15 0.11 

% FOREST 0.218 0.264 0.051 -0.178 0.327 -0.478 

% Grass land 0.073 0.199 -0.389 0.42 -0.255 0.179 

%CULTIVATION -0.322 -0.251 0.228 -0.165 -0.072 0.102 
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Table 5: Principal Components used in the regression model 

 

 

 

 

 

 

 

 

 

 

 

 

Principal Components at each catchment 

Catchments PC1 PC2 PC3 PC4 PC5 PC6 

Upper Great Gibe -0.6892 0.0348 1.6851 -1.0096 -0.7236 0.6486 

Tunjo -1.3359 0.2922 2.0959 -1.8672 0.2834 -0.6203 

Walga -2.4924 -1.3750 2.2361 0.8868 0.2063 1.0828 

Wabe -3.4958 -2.7865 0.2810 -0.2498 0.8316 0.0386 

Gorormbo -3.1715 -2.1860 -0.0675 0.0785 0.5734 -0.1938 

Guma- Dincha 0.2679 2.7348 1.1859 0.0696 0.8190 -0.1717 

Gilgel-Gibe 0.1707 0.3000 1.1448 0.5432 -0.5117 1.3124 

Gojeb 1.0128 1.8638 1.6419 -0.2523 -0.2994 0.2784 

Warabessa -0.3968 0.1629 1.0130 0.5223 -0.8136 -0.7672 

Sharma 1.9833 2.0169 1.5429 -0.8249 0.3122 -0.9714 

Middle Omo 0.4162 -1.1816 0.3850 0.5356 -0.6826 -9.0986 

Meki Kako 0.2049 0.0066 -1.3025 -2.1081 1.0152 -0.3310 

Kibish 1.4795 1.1020 0.0987 3.5365 -0.7262 -0.8007 

Lower Omo 5.0300 9.4960 -0.7842 -0.4740 -1.1471 0.2597 

Zage -1.8923 0.2450 -1.8191 -0.3262 -1.4522 -0.2778 

Irgene -1.6900 1.8120 -2.0462 1.7732 0.1186 -0.3175 

Demie -2.3076 1.6030 -2.7694 -1.3340 -2.5509 -0.2774 

Lower- gibe -0.9241 -1.0230 1.1199 -0.2623 0.1221 0.4579 

Ajancho 0.1423 0.4223 -1.6470 -0.0071 0.5621 -0.9700 

Upper Omo 0.1081 2.2491 -1.2547 0.7697 0.7679 2.3190 
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Table 6: Regression equations used for filling and extension of missed hydrological data

Missed River 
stations(Y)  

Nearby River Stations (X)   
Correlation  
(r²)  

 
 
 
Equation  

 
 
 
Remark  

River Name  Id  River Name  Id  

Ghibe Nr. 
Baco  

91020 Amara  91021 0.73 Y=0.751x+0.039  Filled  

Walga  91010 Walga nr tole 
road 

91004 0.76 Y=1.553X+1.228  Filled  

Werabessa 
near tole 

91022 Warabessa 
near 
selkamba  

91010 0.6 Y=1.155X+1.074  filled  

Wabi  91004 Megech  91005 0.92 Y=3.127X+1.043  Filled  

Gumma  92004 Dincha  92005 0.74 Y=0.9X+2.078  Filled  

Gibe near 
Limugenet  

91011 Nr.Assendabo  91008 0.74 Y=1.245X+11.71  Filled  

Gogeb Nr. 
Endeber  

91007 Wabi  91004 0.86 Y=0.54X+2.458 Filled  

Gibe Nr Seka  91017 G.gibe  
Nr.Assendabo 

91008 0.82 Y=0.334X+0.590  Filled  

G.gibe 
Nr.Assendabo 

91008 G.gibe @ 
Abelti  

91001 0.86 Y=0.70X+0.55  Filled  

G.gibe @ 
Abelti  

91001 G.gibe  
Nr.Assendabo 

91008 0.86 Y=2.93X+1.031  Filled  

Ajancho Nr 
Areka 

92010 Sokie  92009 0.79 Y=0.498X0.958  filled & 
extended  
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