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Abstract 

Global network infrastructures are increasing with the development of new technologies and 

growth in Internet traffic. As network infrastructures increases, maintaining and monitoring them 

will become very challenging since thousands of alarms are generated every day. Clearing those 

alarms by corrective maintenance activities require considerable effort and resources (car, labor, 

and budget). 

In mobile networks, a Base Transceiver Station (BTS) is one key infrastructure element 

performing the task of connecting customer equipment with the cellular network. BTS services 

may be interrupted due to transmission, optical fiber cut, power system failure, natural disaster or 

many more. In the case of Ethio Telecom (ET), the sole telecom service provider in Ethiopia, 

power system failure takes the biggest share for interruption of BTS services. Minimizing power 

system failure will reduce downtime of the BTS thereby, guarantee customer satisfaction and 

maximize revenue. Recently, machine learning algorithms are used to predict failure in various 

areas like power distribution, hydropower generation plants, solar power generation plants, high 

voltage transmission grid and many more. 

This thesis investigates predicting BTSs power system failure using a recurrent neural network 

(RNN) types namely, long short term memory (LSTM) and gated recurrent unit (GRU) with linear 

and sigmoid activation function applied for the output. In parallel, the prediction performance of 

LSTM and GRU has been compared. Data collected from five BTS sites for twenty weeks of 

observations are used to train and test the model. The data are prepared with two different data 

arrangements, which are a single site and multiple sites. The relevance of using different data size 

is, to check the impact of increasing data size with different arrangements on the prediction results. 

Mean squared error (MSE) and number of epoch are used to evaluate the performance of the 

models with different configurations. Based on the results found, GRU using sigmoid activation 

function with feature reduction achieves better performance than LSTM. In addition, both LSTM 

and GRU can be used for predicting BTS power system failure. 

Keywords:- Base Transceiver Station, Gated Recurrent Unit, Long Short Term Memory, 

Recurrent Neural Network. 
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1. Introduction 

Global network infrastructures are increasing with the development of new technologies and 

growth in Internet traffic; the latter is generated from cellular mobile users and different businesses 

like banks, manufacturing, and hospitals [1]. Mobile and fixed telecommunication infrastructures 

take the biggest portion from the global network infrastructure share [1].  

Uninterrupted operation is the focus of any telecom operators to increase revenue, securing the 

quality of services (QoS) and customer satisfaction. As network infrastructure increases, 

maintenance and monitoring of the overall system will become very challenging. Since thousands 

of alarms are generated from mobile networks on a daily basis. So, fixing and clearing those alarms 

by corrective maintenance activities will diminish the performance of the overall system because 

corrective maintenance activities take place after the actual failure happen [2]. In addition, 

corrective maintenance requires considerable effort and facilities such as cars, labor, and budget. 

In mobile networks, Base Transceiver Station (BTS) is one key infrastructure element that is 

performing the task of connecting the customer equipment with the cellular network. BTS services 

may be interrupted due to many reasons like transmission failure, optical fiber cut, power system 

failure, natural disaster or many more. In the case of Ethio Telecom (ET) power system failure 

takes the biggest portion. Because all the communication equipment is supplied from a common 

power source, their failure affects overall services provisioning. As power systems are critical 

elements in any communication system [3], their failure may cause an interruption to the complete 

services or failure of subsystems. Therefore, eliminating the failure causes of the BTS power 

system will minimize the downtime of the overall system and it will increase customer satisfaction 

thereby maximizing revenue. In addition to service interruption and customer dissatisfaction, such 

a failure may cause a loss of customers and the company data [4][5]. 

 In the case of ET, because the power system failure takes the biggest share, minimizing these 

failures by following recommended maintenance trends would reduce downtime of the BTS and 

the overall services provisioning thereby, guarantee customer satisfaction and maximize revenue. 

Recently, machine learning algorithms are used to predict failure in various areas like power 

distribution systems, hydropower generation plants, solar power generation plants, high voltage 

transmission grid and many more [6]. 



                                                                                                                   

2 
Recurrent Neural Network-based BTS Power System Failure Prediction 

In ET, there are around 7093 BTSs over the whole country and above 742 of them are found in 

Addis Ababa city, Ethiopia. NetEco real-time power monitoring system is installed to manage and 

check the events (operation conditions). This monitoring system collects real-time measurements, 

by using measuring tools and sensors which can generate alarms. Besides collecting real-time 

measurements, the monitoring system is capable of keeping history data and report these data for 

the central monitoring system [7]. 

Most of the BTS sites in Addis Ababa support cellular communication types Global System for 

Mobile Communication (GSM), High Speed Packet Access (HSPA), and Long Term Evolution 

(LTE). In addition to cellular communication, at the BTS sites looping and transmission services 

may take place. All of the services are supplied from a common power system, but with different 

priorities. Services with the highest priority are connected on separate distribution units (but from 

a common source) and services with the lowest priority are connected to another distribution unit. 

The main reason behind connecting the loads on different distribution units is, to easily disconnect 

them on different orders and conditions. Standard mobile services (GSM, HSPA, and LTE) are 

less prior than MW, transmission, and optical equipment [7]. However, both services get power 

from a common power source, but with different distribution systems and the availability or 

performance of the overall services significantly depend on the performance and availability of the 

power source. Giving priorities for services is not enough solution to guaranty the uptime of the 

services, but the maintenance trends of the power system may determine the performance of the 

overall services at BTS sites. Since both the equipment’s supplied from a Therefore power source, 

following good maintenance strategies is mandatory in order to increase the performance of the 

overall system [2]. 

Nowadays, the maintenance trends shift from reactive maintenance to proactive maintenance, 

where reactive maintenance focuses on giving a solution for the problems after the actual failure 

happen and proactive maintenance focuses on preventing the failure by using preventive and 

predictive maintenance. Both of the maintenance approaches will have their own advantages and 

disadvantages. For instance, reactive maintenance will have its own advantage regarding 

consuming all the remaining component lifetime (until the actual failure happens), but service 

downtime will increase until the repairing or replacing action takes place[2][8]. Whereas, proactive 

maintenance has a greater advantage when the tasks or services are critical, which means the failure 
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of the service may be prevented before it might cause damage to expensive equipment or loss of 

human life and incur a big loss. 

Prediction of impending failure will increase equipment operation time and helps to realize the 

return on investment[5]. Moreover, predicting the future is used to implement better maintenance 

strategies, used to take correct decisions about the future, used to implement spare parts and 

resource assignment, better resource utilization, and many more. In order to engage in proactive 

maintenance activities, historical failure information, and different measurement data are required 

because the future is predicted based on the past [9]. 

1.1 Statement of the Problem 

Nowadays, proactive maintenance activities are a must choice for operators in order to guarantee 

QoS and customer satisfaction [10][11]. Corrective maintenance will require a lot of effort and 

facility because it is engaged without a scheduled program. In addition, it will diminish the 

availability of a system since services are interrupted until the required repairing or replacing work 

takes place. Moreover, the cost of downtime is very high if failures are on critical components or 

critical sites, (e.g., a hub site failure may be the cause for other site service disruption), in off-

hours, pick-hours, and remote locations. Therefore, predicting the upcoming failure would have a 

great advantage in solving unexpected service interruption, to guarantee QoS and thereby increase 

revenue. 

 

Figure 1.1 One-month failure root cause in April 2019. 
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Even failure prediction activities are taking place in different fields, but no prior works in BTS 

power system failure prediction. Therefore, this work might have a big contribution in enhancing 

the performance of the BTS power system. As recognized from one-month failure root causes for 

BTS report and tried to illustrate in Figure 1.1, a total of 2067 BTS failure registered for April 

2019, of which 54 % of the failures are due to ET power system, 33 % due to commercial power 

outage (in this case the service by Ethiopian  Electric Power utility (EEPU)), 9% is due to 

transmission and fiber cut, and the rest 4 % of the failure causes are unknown. Therefore, 

predicting BTS power system failure have a big impact to enhance the performance of the power 

system, thereby it will improve the provisioning of the overall service. 

1.2 Objective 

1.2.1 General Objective 

The general aim of this research is to predict BTS power system failure by using 20 weeks time-

series data which is collected from the NetEco power monitoring system in ET. To achieve these 

failure prediction activities, LSTM and GRU machine learning algorithms are used. 

1.2.2 Specific Objectives 

The specific objectives of this research work are: 

 Study BTS power system architecture to understand the dependency and configuration of 

equipment in the BTS power system; 

 Reviewing different papers on machine learning, failure prediction, BTS power system 

components, and configuration; 

 Study RNN (GRU and LSTM) that are used to predicting the impending failure; 

 By using BTS power system data, evaluate the predictive performance of LSTM and GRU 

using different activation function; 

 Revise data preprocessing techniques especially on time-series data (normalization and 

outlier detection); 

 Learn how to use python for prediction activity (specifically scikit-learn a library for 

machine learning in Python) and use for BTS power system failure prediction. 
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1.3 Methodology 

To engage in this research work, there are some important conditions need to be considered during 

data collection, data preprocessing, reviewing BTS power system architecture, and studying 

different machine learning approaches. In order to formulate the problem correlation analysis 

between features and failure has been made. And bus-bar voltage, direct current (DC) load power 

and DC load current are found features that have high correlation results with the actual failure. 

From the algorithm point of view, RNN (LSTM and GRU) is applied using Min-Max 

normalization for the input, linear and sigmoid activation function for the output. In addition, the 

model's results are checked with and without feature reduction techniques. Moreover, RNN hyper-

parameters and recommended values are applied for the tests. MSE and number of epoch are used 

as performance measurements. MSE fundamentally measures an average squared error between 

the predicted and the actual values. The higher MSE value, the worse the model and the minimum 

MSE the better the model. In addition, the number of epochs is a parameter defines the times that 

the learning algorithm will work through the entire training dataset. 

In addition, reviewing several related papers to learn the technics how others did the prediction 

activities is the primary operation. Data collection is conducted from ET that contains both good 

and bad measurements. The data is collected from a single server (Net-Eco power monitoring 

system sever) over 20 weeks period with a weekly collection program. The collected data has 11 

features with a 5-minute sampling period. In both the tests (LSTM and GRU), the number of 

features and data size that has been are equal. 90% of the data is used for the training and 10% of 

the data is used to test the performance of the model. In addition, data merging and preprocessing 

have been engaged because the data is collected weekly-based and in a separate excel spreadsheet. 

So, it should have a sequential time-stamp. After all, an Excel spreadsheet for data preprocessing, 

TensorFlow which is an open source library used for machine learning is configured in Python. 

1.4 Literature Review 

Nowadays, a neural network is used for diverse applications including image processing, 

classification, and prediction. Neural networks can learn patterns and capture information 

automatically from the data. As research shows that, a neural network can be used to predict faults 
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of individual components or failure of a subsystem. To the best of our knowledge, there is no prior 

work that applies machine learning techniques to predict BTS power system failure. The next 

section presents prediction works that are done in the area of component failure, transformer, 

power grid, hydraulic generator, and interconnected transmission system.   

Chigurupati, R. Thibaux, and N. Lassar investigated the predictive abilities of a neural network 

technique by predicting individual component times until failure in advance of actual failure [12]. 

They employed a Support Vector Machine (SVM) for classifying the data. The data includes a 30-

failed module having time information for the training with three classes. Data with three hours 

leading up to failure is assigned to class 2, data with less than eight hours and greater than three 

hours is assigned to class 1 and data with more than 8 hours are assigned to class 0. The developed 

neural network algorithm was able to monitor the health of 14 hardware samples and notify the 

coming failure well ahead of actual failure. 

C. Haseltine et al used a neural network to determine performance and areas of concern (determine 

areas that require more attention by using the weight factor) of the power grid [13]. A single layer 

neural network with 10 years of data was applied. Through the investigation, they tried to consider 

all components of the power grid system (generation, load, transmission, and distribution). In 

addition, they included features containing information about the major failure causes of a power 

grid for the training. Those features are drought, hurricane, load growth, generation reserve, and 

proper control system operation rate. The limitation of this paper is, it is very difficult to set the 

proper control rate accurately which is used as a feature. Because it highly depends on the power 

grid technician and some unpredictable situation from the power generation through the 

distribution) 

Most of the prediction activities take place by neural networks better than other data-driven 

approaches. K. Venugopal and et al recommend predicting transformer failure using Artificial 

Neural Network (ANN) [14]. They recommend that, in order to achieve better reliability, 

corrective maintenance activities are not sufficient since there will be a temporary interruption 

during maintenance. So, predicting the fault occurrence time has a greater advantage to develop 

reliable service provisioning and they configured a feed-forward backpropagation network with 

100 neurons in the hidden layer that has been applied on MATLAB.  
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F. Wang, Z. Mi, S. Su, and C. Zhang develop an ANN based model to predict power generation 

of a grid which is connected to a photovoltaic plant [15]. They applied 16 inputs and 1 output 

model having two hidden layers with 15 neurons for the first layer and 7 neurons for the second 

layer. The input variables for training include solar radiation, ambient temperature, and power 

measurements were taken for 14 hours and they applied Mean Absolute Bias Error (MABE) and 

Root Mean Square Error (RMSE) as a performance measurement. They conclude power prediction 

generated power from the grid performs well and they found root mean squared error (RMSE) of 

9.86% and the mean absolute error (MABE) of 7.16%. 

N. Nadai et al,  used a neural network for predicting the normal and abnormal operating conditions 

of hydraulic generator [16]. In order to do this work, one-month operational parameter 

measurements and sensorial inspection results collected from a monitoring system are used to train 

the neural network. Totally twenty-five measurement features are collected and out of these 

twenty-five features, two of the features which have much information about the performance of 

the hydraulics generator at the plant are selected as a target. These features are shaft vibration and 

temperature. In order to achieve better performance, they recommend using diverse data ( data 

which contain both normal and abnormal operation measurements)  which will give a better chance 

to the model to produce the best result. 

L. T. Mar [17], uses an artificial neural network approach for predicting fault in a large 

interconnected transmission system and they conclude that ANN can predict the failure with better 

performance than the mean time between failure (MTBF) and mean time to failure (MTTF). In 

addition, they recommend careful selection of features that will have more information about the 

failure to be predicted which, will define the success of the prediction. So, they select the bus 

voltage and line current which has better information regarding the operating conditions. 

Due to the nonlinear behavior of most of the time-series data and limitation of neural network with 

capturing long-term information, predicting the failure accurately is challenging. To deal with this 

problem RNN was introduced. J. Zheng, C. Xu, Z. Zhang, and X. Li [18] uses LSTM based RNN 

to show the capabilities to predict the electric loads. A total of 16 weeks of load measurement data 

with one -minute sampling period is used. Out of 16 weeks data, 14 weeks for training and 2 weeks 

for testing. Long term memory is problems that encounter in a standard feed-forward neural 

network. In addition, they show LSTM capability to predict both long term and short term faults. 
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Moreover, the papers discuss and compare multiple types of time series predicting method for 

future electric load forecasting. Finally, they develop an electrical load predicting scheme on GRU 

because they have got better performance than LSTM and other linear prediction techniques for 

complex nonlinear data. In addition, they recommend that long term forecasting is not feasible 

because there is an irregular increase in the demand for electric loads. 

1.5 Scope and Limitation 

The main scope of this research work is to predict BTS power system failure, by using RNN (GRU 

and LSTM) algorithms. However, the data collection process gets very difficult because the 

maximum data that can be collected from the monitoring system with 5 minutes sampling period 

is one week. Of course, it is possible to get one-month data with one hour sampling period, but the 

possibility of losing information will increase as the sampling period increase. Therefore, the data 

collection scheduled based on a weekly collection plan and the maximum data collected for this 

research is 20 weeks. As big data will give a better chance for RNN to model the data and capture 

more information. So, it could be better to collect more data and test the performance of the 

algorithm. 

1.6 Contribution 

This thesis work makes some key contributions to the development of BTS power system failure 

prediction activities, including the following: 

 Organizing the data with two different sized arrangements. Single-site data starting from 

12 weeks to 20 weeks and multiple sites data which is 20 weeks of observations for five 

sites; 

 Compare the prediction performance of two RNN types which are LSTM and GRU; 

 Motivate proactive maintenance activities for the company because reactive maintenance 

has its own limitations for assuring QoS; 

 Motivate researchers to engage in a BTS power system area and can be used as supplements 

for the planning and optimization of BTS power systems in ET; 

 Describes BTS power system components, architecture, and operating principles which 

may help staffs engaged in maintenance work; 
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1.7 Outline of thesis 

The thesis is structured in seven chapters. Chapter one discusses the introduction, problem 

statement, literature review, and methodology used to handle the prediction activity. Chapter two 

presents BTS power system architecture, component configuration, operating principles of BTS 

power system, BTS power system failures type by categorizing them based on units. Chapter three 

describes RNN and its applications for prediction especially types called LSTM and GRU. Chapter 

four discusses the data collection, preprocessing and technics used like normalization, activation 

function, and correlation analysis. Chapter five presents the experiment setup which includes data 

set preparation, target selection, and the parameter setup. Chapter six discuss tests and results 

found using different data size. Finally, Chapter seven concludes the overall research and gives 

insight for future works. 
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2. Overview of BTS Power System 

2.1 BTS Power System Equipment and Configurations  

BTS is a transceiver that facilitates wireless communication between users' equipment and a 

network. The BTS is composed of different components like cellular network equipment, 

transmission equipment (which is used as a backbone or a link to other BTS), and power 

equipment. These equipment need electrical power to perform their operation properly and they 

have different priorities. Most of the time transmission equipment have higher priority than cellular 

network equipment (GSM, HSPA, and LTE). Transmission equipment is high prior because they 

serve as backbone links and they are used for linking remote BTS and exchanges [7]. Therefore, 

the failure of this high prior equipments will affect not only local cellular services but also other 

BTSs and exchanges. 

BTS power system is responsible for supplying the required electrical power to the BTS 

subsystems and it is composed of different power sources, protection devices, switches, fuses, and 

circuit breakers. We may find the BTS power system with different configurations based on the 

location or available spaces at the site and site geographical conditions [19][20]. Most widely used 

configurations are: 

 BTS with solar panel and battery bank; 

 BTS with generator and battery bank; 

 BTS with commercial power (mains) and battery bank; 

 BTS with commercial power (mains), and battery bank; 

 BTS with commercial power (mains), generator, solar panel, and battery bank.  

The above power system configurations and requirements for BTS power system widely vary 

depending on a number of factors including whether the site is indoor or outdoor, estimated traffic 

(load), whether the site only gives mobile services or Hub sites (which is used as backbone link 

for other BTSs or exchange), service supported, site access (transport to and from the site), 

operation and maintenance constraints [20].  

Figure 2.1 shows the power system configuration in most BTSs in Addis Ababa. Commercial 

power (mains), diesel generator and battery bank are used as power sources. These power sources 
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are operating with different priorities. When the commercial power source fails to supply 

alternating current (AC) power, the generator automatically starts and the automatic transfer switch 

(ATS) transfers all the loads to the generators. The rectifiers get AC power from a commercial 

source or generator and it converts 220VAC to 48VDC to provide power to direct current (DC) 

loads and charge the battery banks [7]. 

 

Figure 2.1 BTS power system configuration. Source: Adapted from[21]. 

2.2 Operation Principle of BTS Power System 

The operation principle of a BTS power system varies based on the types of power equipment 

configuration used. Most of the time from the ET perspective, in cities like Addis Ababa the 

commercial power source is a primary power supplier while generator and battery bank are standby 

(secondary) power sources. For remote sites, solar power may be used to charge the battery bank 

and we may also find generator as a standby power source. 

When the commercial source power is interrupted (i.e., totally turned off, phase lost or below the 

expected threshold), the ATS control module will send a start signal to the generator control 

module to start the generator and the generator start and supply AC power to the site. Then the 

rectifier received AC power from the commercial sources or the generator and convert it into DC 

48VDC to supply the communication equipment and charge the battery banks. 
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Almost all the AC sources that we find in Addis Ababa BTSs are three-phase five-wire systems, 

The three phases are designated as R, S, T,  neutral N and earthing E.  The rated input voltage is 

220VAC in single-phase or 380VAC line voltage in three-phase.  

Moreover, the BTS power system encompasses different types of components, monitoring units, 

and protection devices including sensors, environmental equipment (air conditioner and fan), surge 

protection, AC or DC fuses, circuit breaker, relay and lightning arrester. The protection devices 

are used to protect the equipment from undesired events like a short circuit or overvoltage.  

In general, a BTS power system structure and components configuration can be classified into four 

major parts namely: 

 AC distribution unit; 

 Rectifier; 

 Direct Current Distribution Unit (DCDU);  

 Monitoring Unit and each unit is explained in the next sections.  

2.3 AC Distribution Unit 

The AC distribution unit inputs its AC power from a commercial source or generator and 

distributes it to different loads. As shown in Figure 2.2, the AC part consists of commercial power 

(mains), stand by generator, ATS, main distribution board (MDB), surge protection devices 

including fuse, circuit breakers, and lightning arrester [7]. 

 

Figure 2.2 AC distribution unit. Source: Adapted from [7]. 
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2.3.1 Automatic Transfer Switch (ATS) 

ATS is an electromechanical switch, which is used to transfer the loads to commercial power or to 

the generator. When the commercial power fails to supply AC power, the ATS control module 

sends a signal to the generator control module to start the generator and the ATS transfer all the 

loads to the generator. When the commercial power restores, the ATS will transfer the loads to the 

commercial power source. The basic function of ATS is to harmonize and supply the AC voltages 

from different sources to the equipment. 

2.3.2 Main Distribution Board  

Main Distribution Board (MDB) is an electric distribution system board that divides an electrical 

power to secondary circuits based on the rating of the loads connected to it. Sometimes it uses a 

protective fuse or circuit breaker for each path in a common junction box. MDB gets its input 

power from a commercial source or a generator and supplies this power to the connected loads 

including the rectifiers. 

2.3.3 Generator  

A generator is composed of engine, alternator, and controller parts which convert mechanical 

energy into electrical energy.  Most of ET generators that have been found at BTS sites use deasil 

for running the engine or to create mechanical energy. The rating of the generators depends on the 

loads which will be handled at the site. The generator is responsible to supply AC power when 

commercial power fails to supply the loads and when it the AC voltage became below the 

configured thresholds. When commercial power fails, the generator should have to start 

automatically and serves the site until commercial power recovered. If the generator fails to start 

while commercial power interrupted, the battery bank takes care of supplying the loads until it 

exhausts (minimum configured threshold) it’s stored power. 

2.3.4 Circuit Breakers, Surge Protection, and AC Transducers 

A circuit breaker is a protective switch, which is used to safeguard equipment attached to it from 

undesired events (when the current becomes beyond safe level or the rating). Whenever a circuit 

breaker trips, it requires manual restoration.  
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Surge protection (surge suppressor) is a device designed to protect equipment from voltage spikes 

or lightning, mostly which occurs when the weather conditions become rainy or fogy. AC 

transducers (used as a sensor) is connected to the AC distribution system which is used sense the 

required AC input parameters (phase voltage, phase current, frequency, and phase angle) and 

communicate the readings to the monitoring system. 

2.4 Rectifier 

A rectifier is an essential element in the BTS power system, which is used to convert AC voltage 

into DC voltage because most of the BTS equipment operates on DC power. A rectifier is also 

used to charge the battery bank while the commercial power or the generator is available. In 

addition to the above-stated responsibilities, rectifiers also handle smoothing the voltage, protect 

sudden changes in voltage or current, DC to DC conversion, PFC and filtering harmonics.  

Most of the communication equipment are very sensitive for interference so, rectifiers that will be 

used for BTS should be selected by considering the equipment’s requirements. Rectifiers operate 

on a wide range of input sources from 80VAC to 300VAC and frequency range of 45Hz to 60 Hz. 

The relevance of operating on a wide range is to protect the sites from interruption on a poor power 

distribution environment [7].  

 

Figure 2.3 Rectifier internal components. Source: Adapted from [7]. 

As shown from Figure 2.3 above, rectifier internal structure, before rectified voltage enters to PFC 

and a boost circuits, electromagnetic compatibility (EMC), surge and lightning protection process 

have taken place. After PFC and boosting the voltage applied, the voltage is provided to DC-DC 

conversion. The PFC and DC-DC conversion enhance the reliability of the rectifier by increasing 
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energy efficiency and eliminating different harmonics, respectively. After all this process, the 

rectified 48VDC will be supplied to the battery banks and DC loads. And all the status and the 

parameters inside the rectifier are communicated to the monitoring system by control interface. 

2.5 DC Distribution Unit 

The DC Distribution Unit (DCDU) gets its DC power from the rectifier or battery bank and 

distributes it to different DC loads that we found at BTS. As can be seen from the block diagram 

of DCDU in Figure 2.4 below, it includes battery banks, Load Low Voltage Disconnect (LLVD) 

contactor, Battery Low Voltage Disconnect (BLVD) contactor, and surge arresters. Rectified 

48VDC is supplied to both DC loads and battery banks in parallel. There is a shunt in between the 

battery bank and the loads and the shunt is used to detect (sense) the total load current and battery 

current [22]. DCDU also has LLVD and BLVD function which is used to serve the loads with 

different priorities. When the battery voltage becomes below the configured threshold, the system 

will automatically disconnect less prior equipment by tripping off the LLVD contactor. The 

purpose of disconnecting less prior services is to keep active the critical loads until the battery 

bank exhaust its stored power (gets to the minimum configured voltage level) [7]. 

 

Figure 2.4 Direct Current Distribution Unit. Source: Adapted from[7]. 

2.5.1 Battery Bank  

The battery bank is an essential element for the BTS power system, which is interconnected in a 

series-parallel manner. The series connection is used to increase the voltage level, whereas the 

parallel connection increases current generating capabilities (ampere-hour, AH) of the battery 
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bank. Four 12VDC batteries are connected in series to achieve the 48VDC and the number of 

battery banks connected in parallel depends on the actual loads required at the specific site; as 

shown in Figure 2.7 most BTSs found in the ET Addis Ababa sites have two battery banks 

connected in parallel.  

 

Figure 2.5 Battery bank configuration (two battery bank).  

Generally, the battery bank is expected to supply the site for 8 hours and above when commercial 

power and generators fail. In addition, the battery bank handles the task of supplying DC power to 

the equipment until the generator starts in case the commercial power fail and while the ATS swaps 

the load from the generator to the commercial power or vice-versa.  

BTS power system performance highly depends on the performance of the battery banks, 

especially for sites that exist in poor commercial power distribution lines (repeated commercial 

power failure encounter). The battery banks might lose their performance or the battery bank 

exhausts its stored power to quickly due to multiple reasons and there are many factors which may 

degrade the performance of the battery banks load handling capacity [23]: 

 Corrosion of the positive grid structure due to oxidation of the grid; 

 Higher working temperature environment; 

 Discharge cycles (when charging and discharging cycle end the specification); 

 Overcharging (causes excessive gassing); 

 Undercharging (causes sulfating); 

 Deep discharging (over-discharged may damage the battery elements). 

The battery bank performance degradation can be detected by comparing the battery total 

discharge and total battery cycle with the manufacturer specification and age from the time of 

installation. 
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2.6 Monitoring Unit 

The monitoring unit is a key element for the BTS power system, which highly supports the 

maintenance activities and helps telecom operators to guarantee QoS and used to minimize the 

restoration time when a failure occurs. The monitoring system detects the operation status of the 

system by using different kinds of sensors or measuring tools. Sensors are devices that are used to 

detect physical parameters and convert into a signal which can be measured. For instance: 

temperature, humidity, voltage, current, battery status, door contact, smoke detector, camera, and 

many more.  Those sensors will sense the operation of the equipment’s on a real-time manner and 

transmit the measured results to the local monitoring unit and as well as for remote monitoring 

systems [24]. In addition to data collection, monitoring unit has many functionalities including: 

 Battery bank management; 

 Battery protection; 

 Data processing for the purpose of reporting; 

 Gives an interactive interface for the technicians using liquid crystal display (LCD) and 

buttons that enable the engineers to configure and query necessary information from the 

monitoring unit.  

Moreover, the monitoring system has the capability of protecting the equipment by shutting down 

in case of critical events encountered (flood, fire or smoke) and reports to the remote monitoring 

system.  

ET uses the NetEco which is a short naming for Network Ecosystem, it provides management of 

site power system and environmental issues [24]. This monitoring system manages the activities 

in real-time and reports all the conditions to local and central monitoring system including failure 

information.  

From the NetEco BTS power system monitoring point of view, alarms (failure or risk notifications) 

are categorized based on the damage they contribute. These alarms can be reconfigured based on 

the operation conditions and they are classified as critical, major, minor, and warning alarms. 

Critical alarm indicates a problem that may interrupt both the BTS operation or there may be a 

potential risk to interrupt the operation. Major alarms indicate the possibility of some service-

related problems. Minor alarm indicates a problem of relatively low severity that may not obstruct 
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the BTS operation but it may damage equipment if maintenance action is not taken. The warning 

alarms indicate a condition that can potentially cause a problem with the operation in the long run. 

Table 2.1 BTS power system alarms category and descriptions. 

Alarms Type Category Description 
Abnormal battery 
current Major 

The current level of the battery current becomes beyond 
the expected range (+ve or –ve). 

AC SPD fault Major Surge protection device malfunction or get damaged. 

Air conditioner failure Major 
When the air conditioner refrigerant becomes low, fan 
failure which may cause stress on the system. 

BLVD Critical 
Disconnecting all the loads that found at the BTS in order 
to protect the battery from getting a deep discharge. 

Bus-bar under-voltage Major 

Pre-warning for LLVD to happen. If the battery 
performance is poor, there may be a possibility that 
LLVD to happen. 

Communication 
between NMS & NE Major 

When the network monitoring system can not 
communicate with the network element or the site itself. 

DG output under-
voltage or over-voltage Minor 

When the generator voltage becomes under or 
overvoltage. 

D.G running Major 
When the generator continues running while the 
commercial power is available. 

D.G  failure Critical 
When the generator fails to start or the generator 
encounter failure. 

Door open alarm Warning The site door has opened notification. 

Fan failure Major When fan failure encounter ate the BTS sites. 
High ambient 
temperature Minor 

The temperature level becomes beyond the configured 
threshold. 

LLVD Major 
Disconnecting less prior services when the battery 
voltage gets below the configured LLVD thresholds. 

Low ambient humidity Minor 
The humidity of the site becomes lower than the 
recommended or configured thresholds. 

Low fuel level Major When the generator fuel level gets the minimum level. 

Mains failure Major When commercial power is gone. 

Mains lose phase Minor When the commercial lines lost one or two phases. 

Mains over-voltage Minor 
When the commercial power gets over the configured or 
recommended threshold. 

Mains under-voltage Major 
When the commercial power voltage level gets below the 
recommended or configured thresholds. 

Power system charge 
failure Major When the battery charging process interrupted or failed. 

PSU fault Major When the power supply unit (rectifier) failed. 
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PSU lost Minor 
 When the power supply unit disconnected from the 
rectifier rack. 

High or low battery 
temperature Major 

When the battery temperature becomes below or higher 
than the recommended or configured thresholds. 

 

2.7 BTS Power System Failure 

BTS power system failure is an event when BTS power gets below the configured threshold or 

a power blackout (gone). For this research, failure is defined as partial BTS power system failure 

and total BTS power system failure in addition to a warning for partial failure. These failures can 

be detected from the bus-bar of the BTS power system. The bus-bar is a copper strip or bar, where 

DC loads, battery bank, and the rectifier output are connected in parallel. The measurements taken 

from the bus-bar of a power system are bus-bar voltage, DC load current, and DC load power. But, 

bus-bar voltage capture relatively higher information than that of DC load current and power.  

As tried to illustrate by a diagram from Figure 2.6 when the voltage level gets 48.2VDC it is termed 

as BBUV and it is a pre-warning for the LLVD failure to occur. The duration until failure depends 

on the battery load carrying capabilities. When the voltage level becomes 46.2VDC, LLVD loads 

will be disconnected and the LLVD alarm generated. In addition, when the voltage level gets 

45.2VDC, the BLVD loads will be disconnected and all the services at the BTS sites interrupted 

except the communication between the monitoring system and the site. Disconnecting the loads at 

the BLVD voltage level is used to protect the battery banks from getting deep discharging that 

may damage the battery elements permanently[23]. 

 

Figure 2.6 Failure representation on bus-bar voltage. 
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2.8 Factors for BTS Power System Failure 

There are many factors that might cause BTS power system failure. Power system failure may 

occur because of commercial power (mains) outage, and the inability of subsequent backup system 

(generator, battery banks, and solar power system) or power-related devices (circuit breakers, fuse, 

and rectifiers) failure[25]. BTS power system failure may also arise due to cascading failure where 

the malfunction of one component could result failure of other parts of the subsystems[26]. 

Sometimes individual component failure may cause interruption on the power system thereby the 

whole BTS operation may be disrupted. For instance, if a major load fuse is broken, the load does 

not have any opportunity to get its operational power. So, the service interrupted even all the power 

sources and components are in good condition. 

BTS may encompass transmission and cellular equipment (GSM, HSPA, and LTE) at the same 

compound or shared house. This equipment requires enough (based on the operating specification) 

power to operate properly. If the power to that service is interrupted, the equipment stops its 

operation. Therefore, it requires backup power to continue serving what they are expected.  

Therefore, the battery bank have a big impact on the BTS power performance under the 

interruption of commercial power and generator. 

 

Figure 2.7 One-month BLVD, LLVD, and BBUV alarms. 

Failures have a propagation behavior[26], as can be shown from Figure 2.7 above, the BBUV 

failure propagates and becomes LLVD failure which is a major alarm and the LLVD failure also 
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propagates to BLVD failure which is a critical alarm. This propagation behavior may be deterred 

if the required maintenance action takes place and this can be shown from the figure below, in 

which most of the BBUV alarms have a higher number than LLVD and LLVD alarms also greater 

in number from BLVD. In addition, even they are different in number, almost for all the situation 

after BBUV happen, LLVD and BLVD alarms encounter. This is visibly demonstrated on one-

month alarms in Figure 2.7 below. 

2.9 Types of Alarms at BTS Power System 

Besides classifying the alarms based on the damage they contribute, the NetEco monitoring system 

categorized them based on the unit or subsystem. Observing the alarms from the unit point of view 

have its own relevance to organize maintenance activities, resources (car, spare parts) allocation, 

and staff assignment. The classifications are[7]: 

 Alarms of AC distribution unit; 

 Alarms of DCDU; 

 Environmental alarm. 

2.9.1 Alarms of AC Distribution Unit 

AC distribution failures are events, which occur in the AC parts of a BTS power system. These 

failures may lead to other types of failure. For instance, if commercial power fails to supply the 

site, the generator operates until it exhausts its fuel and then stops serving. Then, the responsibility 

of handling the site falls on the battery bank. Therefore, the impact of commercial power failure 

leads to the battery bank and lastly, the whole BTS operations may be interrupted. There are many 

types of failure which are categorized into AC distribution part [7]. Some of these are commercial 

power (mains) failure, commercial power (mains) phase loss, commercial power (mains) 

undervoltage, and commercial power (mains) overvoltage. 

2.3.2 Alarms of DCDU 

Failures of DCDU part are events, which occur on DC parts. There are many DC part failures 

which will cause service interruption fully or partially including DC undervoltage, DC 

overvoltage, major load fuse break, battery over-temperature, battery charging over current, which 
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may arise due to the battery drain high current when it gets deep discharge and recharging, BBUV, 

BLVD, and LLVD. 

Even most of DCDU failures affect the provisioning of the service, but LLVD and BLVD alarms 

could interrupt the whole operation of the BTS (fully or partially). LLVD alarm is generated when 

the loads are supplied from the battery bank and get below the configured threshold voltage level. 

LLVD event will interrupt all regular mobile services (GSM, UMTS and, LTE) in order to use 

remaining battery power for high prior equipment. BLVD alarm is also generated when the battery 

level reaches below the configured BLVD voltage level. BLVD refers to disconnecting all the 

loads at the BTS site for protecting the battery bank from getting a deep discharge. A deep 

discharge may damage the battery elements permanently, decrease battery life, load handling 

capabilities, it will cause an increase in battery temperature and battery current while charging to 

recover to the normal voltage level. 

2.9.3 Environment Alarm 

Environmental alarms are generated when temperature or humidity becomes beyond the 

recommended or configured level. Even though such alarms rarely happen, environmental alarms 

including smoke or fire and flood may encounter. For instance, high ambient humidity or low 

ambient humidity, low ambient temperature or high ambient temperature are environmental 

alarms. Most of the time the environmental problem comes from weather conditions, 

environmental equipment failure, site type (load), design problems and other failures which are 

not an environmental issue. Rarely, environmental alarms have cascading behaviors and affect 

BTS equipment operation. For instance, over-temperature will increase the burden on air 

conditioners and fans. This burden will cause an over temperature which may cause a fault on the 

equipment and may interrupt the whole operation at the BTS. 
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3. Machine Learning 

3.1 Artificial Neural Network 

ANN is a mathematical formation motivated by the study of interconnections between neurons 

found in the human brain [27]. It consists of an interconnected group of neurons, which processes 

information. A neural network can also be expressed as mapping an input(s) into the desired 

output(s). The input(s) for the neuron may be the output(s) of another neuron. The input and output 

neurons can be one-to-one, many-to-one or many-to-many. For example, as seen in Figure 3.1 two 

neurons feed a single neuron that has one output. Every neuron has different importance and this 

importance will be represented with different weights. In most cases, a neural network is an 

adaptive system that changes its structure and weights based on external or internal information 

that flows through the network during the learning phase. Nowadays, a neural network is used as 

modeling tools for non-linear statistical data and they are usually used to model complex 

relationships between inputs and outputs or to find patterns in data. In the artificial intelligence 

(AI) field, a neural network has been applied successfully to speech recognition, image analysis, 

and adaptive control, in order to construct software agents or autonomous robots [28]. 

 

Figure 3.1 Neurons with waited input and output. 

neural network models can be mathematically represented based on their structure. For instance, 

Figure 3.1 can be represented by using its inputs, output, and weights mathematically as in 

Equation (3.1) [28]. Where 𝑖 represents the number of inputs, weight 𝑤𝑖, input 𝑥𝑖, and output 𝑦. 

𝑌 = ∑ (𝑤௜𝑥௜)௡
௜ୀ଴                                                              (3.1)  

3.2 Activation Functions 

Activation functions are mathematical equations that are used to decide the output of machine 

learning algorithms [29]. Each neuron has its own activation function which decides the neurons 
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to be activated or not based on the degree of information (importance) captured. It has a greater 

impact on the performance of neural networks by deciding the output of the neural network. In 

addition, it determines and improves the accuracy and the computational efficiency of the neural 

network [30]. 

An activation function has many variants, which are used to enhance the neural network reliability. 

The selection of an activation function is employed based on available data type, problem to 

mitigate and resource available. Binary step, linear, sigmoid and tangent hyperbolic (tanh)  

activation functions are some of the well-known and widely used activation functions. Each of 

them is explained in the below sections.  

3.2.1 Binary Step Activation Function 

A binary step activation function work based on a certain threshold to activated or not. When the 

input is above a certain threshold value, the neuron is activated and the output becomes one. 

Whereas, when the input becomes below the threshold value, the neurons will not be activated and 

the output becomes zero. Figure 3.2 [30] shows the activation function. The binary step activation 

function can be mathematically represented as the equation (3.2) [30]. 

𝑓(𝑥) = ൜
0          𝑓𝑜𝑟 𝑥 < 0
1          𝑓𝑜𝑟 𝑥 ≥ 0

                                                               (3. 2) 

 

Figure 3.2  Binary step activation function. 

One of the biggest problems with the binary step activation function is that it does not consider 

multiple level output classification [29], the result found for the output becomes 0 or 1. 
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3.2.2 Linear Activation Function 

A linear activation function transforms the input by multiplying with a constant on each neuron 

and produce an output proportional to the input. If we compare a linear activation function with a 

step activation function, linear is better with respect to having multiple outputs classification, but 

it has a limitation for handling data with complex or non-linear relation for input and output [29]. 

Figure 3.3 [30] shows a linear activation function and can be mathematically represented as the 

equation (3.3) [30]. 

𝑓(𝑥) = 𝑥                                                                            (3. 3) 

 

Figure 3.3 Linear activation function. 

3.2.3 Sigmoid/Logistic Activation Function 

A sigmoid activation function is a widely used activation function for neural networks, which maps 

the input data between zero and one. Since neural networks are used to learn and model complex 

data that experience input and output have a complex relationship, the sigmoid activation function 

becomes a choice for many neural network-based models. The main problem of using the sigmoid 

activation function is, the output values are not zero centered which means it has a limitation on 

modeling data with negative values. Since the sigmoid activation function squash the data in 

between 0 and 1, so both negative and positive data are forced to be mapped to positive value [29]. 

Figure 3.4 [30] represents the sigmoid activation function and can be mathematically represented 

as the equation (3.4) [30]. 
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𝑓(𝑥) =
1

1 +  𝑒−௫ 
                                                                           (3. 4) 

 

Figure 3.4 Sigmoid activation function. 

3.2.4 Tangent Hyperbolic Activation Function 

A sigmoid activation function, the tangent hyperbolic (tanh) activation function is also wildly 

applied for machine learning and it is very similar with a sigmoid activation function. However, 

the main difference is, tanh is zero centered, so it can easily represent both negative and positive 

values [29]. Figure 3.5 represents the tanh activation function and can be represented 

mathematically as equation (3.5) [30]. 

𝑓(𝑥) =
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫  
                                                                (3. 5) 

 

Figure 3.5 Hyperbolic tangent (tanh) activation function. 



                                                                                                                   

27 
Recurrent Neural Network-based BTS Power System Failure Prediction 

3.2.5 Parameters in Machine Learning 

Parameter setup generally has a major impact on the achievement of machine learning algorithms. 

The process of assigning these parameters includes assigning of number of an epoch, batch size, 

number of neurons and many more. The machine learning algorithm operates on an iterative 

process to get the most optimal results by varying the weights at each epoch and in every batch of 

the process [31]. The iteration, the batch size and the number of epochs are used when the data is 

too big and it is not possible to pass all the data once. So, the data should be divided into smaller 

batches before gives it to the computer [31]. 

The number of epochs is a hyperparameter that is used to defines the number of times that the 

machine learning algorithm works through the whole training dataset [31]. One epoch means that 

the samples have passed forward and backward through the machine learning algorithms and get 

an opportunity to update the parameter at every epoch. The number of epochs and the error can be 

plotted to check whether the model has over-learned, under learned or is suitably fit to the training 

dataset [31]. As the number of epochs increases, the opportunity to update the weight and loss is 

also increased. Passing the dataset multiple times may increase the performance, but the possibility 

op the model to overfitting may be increased. Actually, the number of epochs and batch sizes is 

different for a different dataset and it is related to how diverse the data is. 

3.3 Recurrent Neural Networks 

Even activation functions have an advantage regarding speeding wall time (learning time) and bias 

between features, they have their own limitations. They introduce a vanishing and exploding 

gradient (exploding gradient problem is rare) problem for small value and large values, 

respectively, while backpropagation because it uses derivative and multiplication with respect to 

the parameters found in every layer in a neural network [32]. These problems prevent the 

algorithms to memorize and use long-term information, which diminishes the performance of the 

neural network. 

Recurrent Neural Networks (RNN) is basically a neural network, which has a memory to store 

information at every recurrent unit, and it can remember things from the past. RNN feeds the 

outputs from neurons to other adjacent neurons, to themselves, or to neurons on preceding network 
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layers and this capability makes RNN better to model complex works which is difficult to handle 

by a standard neural network [28]. RNN uses an interconnected individual recurrent cell. As shown 

from Figure 3.6 [28], a recurrent cell is an individual unit, with input, output, and, cell state which 

represents the contained information. 

A traditional feed-forward neural network is not well suited to handle sequential data because it 

uses a fixed input sequence for learning the data. Because sequential data may have important 

information in the past sequencethe which may be used to represent the future and may be used to 

understand the entire data, storing this information and used when required determine the 

efficiency of the algorithm [28]. RNN solves the problems that arise to time-series and sequence 

data that suffer from capturing long-term information [28]. Sequence modeling mechanisms have 

their own criteria to be fulfilled. These are: 

 It should support variable-length input; 

 It should have the capabilities of tracking long term dependencies (information); 

 It should have the capabilities to maintaining information order; 

 It should have the capability to share parameters across the sequence. 

 

Figure 3.6 Connection of recurrent cells in RNN 

RNN is widely used for time-series prediction which suffers from capturing long-term 

dependency. Actually, both long-term and short-term information are required to properly model 

the entire sequence. As discussed above, a standard neural network has a limitation to store earlier 

information from the data, because it uses fixed-length observations as input. This means it has a 

limitation to consider the entire sequence. In addition, while backpropagation, vanishing and 

exploding gradient problem encounter which may produce biasing between the features [28]. 

RNNs allow signals to travel both forward and backward and also it introduces loops in the 

network which allows internal connections among hidden units. With the help of such internal 
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connections, RNNs are more suitable for consuming the information in the past data to forecast 

future data [18][27].  

RNN employ interconnected recurrent cell to store information. As can be seen from Figure 3.6 

above, each recurrent cell takes the previous output or hidden states as inputs. The composite input 

at time t has some historical information about the happenings at time T < t. RNN has diverse 

application including image recognition, classification, and prediction. Even RNN has multiple 

variants the most wildly used are Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) [28]. 

3.3.1 Long Short-Term Memory 

LSTM is one variant of RNN that has feedback connections with itself and other neurons. It has 

the capability of considering the entire sequences of data. LSTM is consists of three essential parts 

which determine the output of every recurrent cell. These are forget, update and output gates. 

These gates decide what to store, erase, and output at every computation by open and close the 

information flow. To manage the information flow RNN uses a sigmoid gate and pointwise 

multiplication [33]. 

As explained in Figure 3.7 [33] below, the forget gate 𝑓௧ remove irrelevant information by sigmoid 

function using previous cell output and 𝑥௧ the new input. Equation (3.6) [33] shows the 

mathematical formulation for forget gates. 

𝑓௧ =  (𝑊௙ ∗ σ [ℎ௧ିଵ , 𝑥௧ ] + 𝑏௙ )                                                        (3. 6) 

As stated from Equation (3.7) [33] the update gates decide what values to be updated using 

previous cell state 𝐶௧ିଵ and the new candidate value 𝑓௧  and add a new candidate value which is a 

function of ( 𝑖௧ ,  𝑐௧  ). 

𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ  +  𝑖௧ ∗  𝑐௧                                                                (3. 7) 

Finally, the output gate uses a sigmoid(σ) function to decide what parts of the state to be output. 

The output 𝑂௧  and the new version of cell state ℎ௧  is described mathematically by Equations (3.8) 

and (3.9) [33]. 

𝑂௧ =  σ (𝑊௢ [ ℎ௧ିଵ , 𝑥௧ ] + 𝑏௢ )                                                    (3.8) 
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ℎ௧ =  𝑂௧  ∗ 𝑡𝑎𝑛 ℎ(𝐶௧ )                                                                                                    (3. 9) 

 

Figure 3.7 LSTM internal structure 

3.3.2 Gated Recurrent Unit   

GRU is another variant of  RNN that is inspired by the LSTM unit but simpler than that of LSTM 

from the computation points of view because it is implemented with a simple internal structure. 

As can be noted from Figure 3.8 [33], GRU consists of an update & a reset gate. 

The update gate defines how much previous memory to keep and the reset gate defines how to 

combine the new input with the previous memory and decide how much past information to forget 

and the update gate decide what information to add or remove. GRU can be mathematically 

expressed as 𝑟 which is reset gate, ℎ௧ the new cell state and 𝑍 the update gate as equation (3.10), 

(3.11) and (3.12) [33]. 

𝑟 =  σ (𝑊௥  ℎ௧ିଵ +  𝑈௥ 𝑥௧ )                                                     (3. 10) 

ℎ௧  =   (𝑧 ∗ 𝐶) + ((1 − 𝑧) ∗  ℎ௧ିଵ )                                    (3. 11) 

𝑍 =  σ (𝑊௭  ℎ௧ିଵ +  𝑈௭ 𝑥௧ )                                                      (3. 12) 

 

Figure 3.8 GRU internal structure 
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4. Data Collection and Preprocessing 

There are multiple sensors installed to the BTS power system; these sensors take measurements 

continuously and communicate the data to the monitoring system. Most of the BTS power systems 

configured with different sensors like temperature, humidity, flood, smoke, voltage, current, and 

many more that measure and report events in real-time. The measurements represent unique 

observations and are termed as features in machine learning [28]. 

A neural network is a data-driven approach that is used to model complex and nonlinear 

relationships between inputs and outputs. To model this relationship, the neural network finds 

patterns (information) in the features. The accuracy of modeling this relationship depends on the 

degree of information that every feature hold and it is better for multiple inputs and diverse (good 

and bad) data. Even the complexity of the model increase with the increase in a number of features, 

but it will give a better chance for the neural network to model the data and give an opportunity to 

learn and capture rare events [34]. 

In addition to using multiple features, careful collection and preprocessing of the data determine 

the success and failure of using neural networks [28]. The data collected for this research work are 

only BTS power system related and collected based on a weekly data collection plan. A total of 20 

weeks of data having 11 features with 5 min sampling period has been used. The features are 

working temperature, working humidity, battery current, battery voltage, battery temperature, 

battery total discharge power, battery total cycle times, AC/DC system output current, bus-bar 

voltage, DC load current, and DC load power. The data is collected from the ET NetEco power 

monitoring system. Actually, a large amount of observation will give the neural networks a better 

chance to represent the data and increase the ability to produce the desired output.  

4.1 Features 

A feature is an observation collectged using sensors and measuring instruments. The features may 

have information about the actual operation status of a system and sometimes the features may not 

have or capture small information. In the BTS power system, there are different measurements 

taken that capture operational information about good and bad events. Most of the time a feature 

is usually a numeric data, but one may find features in the form of string and graphs [34]. 



                                                                                                                   

32 
Recurrent Neural Network-based BTS Power System Failure Prediction 

From the ET power system monitoring point of view, features can be categorized based on the unit 

(subsystem) that the measurement is taken from. These are: 

 Environmental features; 

 Battery system features; 

 Load-related features. 

4.1.1 Environmental Features 

Ambient temperature and ambient humidity are categorized into an environmental feature. They 

contain basic information regarding the operation condition of the BTS power system. Maintaining 

the temperature and humidity to the recommended level has its own operational and energy cost 

but it has a direct effect on the performance of the whole system[35]. 

 

Figure 4.1 Working temperature 

Humidity is a concentration of water vapor present in the air and expressed as in percentage (%). 

If humidity levels become too high, it introduces the accumulation of electrostatic charge on 

conductors and insulating materials [36] which may cause short-circuiting, corrosion, and rust on 

the equipment. The recommended humidity range for communication equipment is 40% to 55% 

[35]. As humidity, maintaining the temperature level to the recommended level has its own 

challenges and it is very critical for sustaining the health of the components in the BTS power 

system. The recommended operating temperature for communication equipment is from +15ْ C to 

+25ْ C [36][35]. 

Figure 4.2 indicates, humidity and temperature measurements taken from a specific ET BTS power 

system. We can see that the temperature and humidity are beyond the recommended values. 
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Exposing the equipment to operate beyond the recommended values for short periods of time may 

not be a problem, but running beyond the recommended range for a longer time could result in 

damage to equipment and degrade the performance of the system [36][35]. 

 

Figure 4.2 Working humidity 

4.1.2 Battery System Features 

The battery bank is the critical element of the BTS power system because it is used as a backup 

power source when the commercial power and generator fail to supply what they are expected. 

Battery voltage, battery current, battery temperature, battery cycle, and battery total discharges can 

be categorized into battery system measurements. Because of the battery and the loads are 

connected in parallel on the bus-bar, the battery voltage and the bus-bar voltage follow the same 

pattern. 

 

Figure 4.3 Battery voltage and bus-bar voltage 

Two battery technologies that are widely used in power systems are flooded and lead-acid 

batteries. Flooded batteries require a separate room with their own air conditioning and require 
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periodic follow-up [23]. The separate room and air conditioning are used to prevent the 

accumulation of flammable hydrogen gas, which is produced while the battery is in operation. 

Lead-acid batteries, on the other hand, develop very little hydrogen gas and it is free of moisture 

loss in the charging/discharging process. Therefore, it is possible to install lead-acid batteries in 

the same house with any communication equipment and devices.  

All the battery banks that are found in ET BTS sites are lead-acid batteries. The communication 

equipment and the battery bank are contained in the same shelter and they do not require separate 

air conditioning for the battery bank. These batteries provided 48V DC power and as illustrated in 

Figure 2.5 in Chapter 2, the configuration uses 12v batteries in a series-parallel connection. The 

maximum DC voltage expected from the battery bank is 58.2VDC. When the voltage level gets 

48.2VDC, it is termed as BBUV. When it becomes 46.2VDC, LLVD loads will be disconnected 

and when the voltage level gets 45.2VDC, the BLVD loads will be disconnected in order to protect 

the battery banks from deep discharge. 

 

Figure 4.4 Battery bank, DC load, and AC part connection 

Source: Adapted from [7] 

The battery current is the current measurement taken from the battery output and as indicated in 

Figure 4.5 below, it may be positive (+ve) or negative (-ve). The +ve sign indicates floating current 

which means the battery is charging and the load is carried by the commercial power or a generator. 

When the sign is –ve, the battery handles the load and Alternating Current/Direct Current (AC/DC) 

becomes zero. AC/DC is an average current that is measured at the junction of the AC part and the 

DC part. As tried to demonstrate in Figure 4.4, it is an average AC current because it is measured 

on the three-phase input from the rectifiers. Because the rectifiers have load balancing and current 

equalization (the maximum current difference between the three phases is 1.5Ampper) capabilities 
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[7], the current that we find at the three phases are almost equal and represented by a single current 

measurement. 

 

Figure 4.5 Battery current 

 

Figure 4.6 AC/DC current 

In addition, we find battery temperature which tells about the internal temperature of the battery 

banks. The battery temperature is highly dependent on the battery current and operating 

environment [23]. Moreover, the total charge-discharge count and total power supplied by the 

battery bank starting from the first day of installation respectively may tell the battery current 

condition. 

4.1.3 Load-related Features 

Load related features are bus-bar voltage, DC load current, and DC load power which is measured 

from the bus-bar of the power system. The bus-bar is a copper strip or bar, where DC loads, battery 

bank, and the rectifier output are connected in parallel. BTS power system failures can be detected 

from the measurements taken from the bus-bar, especially from bus-bar voltage. As indicated in 

Figure 4.7 below, failures could be reflected in the bus-bar voltage including BBUV. As noted 

from Figure 4.8 and Figure 4.9, we cannot easily detect BBUV and LLVD from DC load current 
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and DC load power. We can only detect BLVD from the DC load current and DC load power 

measurements. 

 

Figure 4.7 Bus-bar voltage 

As discussed in Section 2.1, the loads that we find at the BTS have different priorities. For instance, 

mobile services (GSM, UMTS, and LTE) are termed as LLVD loads. They will be disconnected 

when the bus-bar voltage level gets around 46.2VDC (the threshold can be reconfigured). BLVD 

loads are the transmission, MW and optical equipment that serve not only the mobile services exist 

in the site but also serve other BTSs sites and exchanges. 

 

Figure 4.8 DC load current 

 

Figure 4.9, DC load power 
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To validate the above statements regarding load-related measurements, specific alarm and its 

voltage, current and power measurements are printed and shown in Table 4.1 below, DC load 

power and DC load current approach to zero and when the bus-bar voltage gets below the 

configured threshold and LLVD alarm is generated (the loads are disconnected). The alarm is 

recovered when the bus-bar voltage restored from 47.01VDC to 49.92VDC, the DC load power 

and DC load current start to raise from 0.07 to 2.81KW and 1.53 to 56.37A, respectively. 

Table 4.1 Measurments and alarms. Source: ET NetEco 

 

4.2 Feature Selection and Extraction 

Feature selection is a technique of identifying features that have better information regarding the 

works to be done. It has a big impact on the success of the neural network because it will minimize 

the computation time and required resources. If it is not selected wisely, it may diminish the 

performance of the neural network [28].  

There are various methods for feature reduction technics used for neural network approaches. Most 

widely used are feature selection and feature extraction [28]. Feature selection is used to reject 

inputs, which is unrelated (having a small correlation) to the output. That means, eliminating the 

features that have small or no relation with the expected output. These uncorrelated features 

increase overhead on the neural network. In addition, feature extraction is the method of converting 

the raw data, to another form or generating new features that can be used for the neural network. 

Feature selection and extraction have many advantages regarding neural networks. Some of them 

are: 

 Reduce redundant information; 

 Reduce the required computational time (wall time); 



                                                                                                                   

38 
Recurrent Neural Network-based BTS Power System Failure Prediction 

 Reduce the resources required for the analysis (CPU, GPU, and RAM); 

 Compress the amount of data to be used by reducing or extracting new features. 

In addition to feature selection and extraction techniques, the amount of data has a big impact on 

the success of the neural network [28][37]. When the amount of data is small, the neural network 

may not capture the required information from the features that are used to model the data. Rarely, 

feature selection and extraction may reduce the performance of the neural network because the 

data must have diverse information in order to realize good performance and the neural network 

might learn rare events from the rejected features [28]. In addition to the data size and number 

futures, understanding the data have a big impact on the success of the neural network [28]. 

Therefore, all the features should be checked whether they contain outlier and wrong 

measurements. So, for this research, all the features are plotted and checked whether they are in 

between the expected range. 

4.3 Data Normalization 

Data normalization is a method of rescaling the values of the features from one range to a new 

range. This approach is used to protect one measurement from biasing other measurements while 

using them for a neural networks. Because both the features are transformed into the same range, 

the impact between features will be reduced. Most of the time, the normalized values are reduced 

to between 0 to 1 or -1 to 1. Normalization is also used to optimize the required resources (CPU, 

GPU, and RAM) for the computation, it reduces the effects of outliers in the data since the process 

starts from the same scale which has an impact on reducing training and testing time [28]. The 

performance of the neural network highly affected while training on different data representations 

(wide range). So normalization increases the performance of a neural network by giving a chance 

for the training and testing from the same data representation. Nowadays, there are many 

normalization techniques applied to machine learning. Statistical or Z-score normalization and 

Min-Max normalization are wildly used for a neural network. 

4.3.1 Z-Score Normalization 

Z-score normalization is a technic of normalization which transforms the inputs linearly to new 

output values having 0 mean and standard deviation of 1. In order to apply Z-score normalization, 
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the mean (µ) and standard deviation (σ) for each input feature are required to produce the new data 

which will have a 0 mean and unit variance. The formula of Z-score for a sample X is expressed 

as equation (4.1) [37]: 

𝑍௜ =
𝑋௜  −  𝑋ത 

𝑆
                                                                     (4. 1) 

Where Xഥ (the sample mean), S (the sample standard deviation), X sample input and Z is Z score 

value. 

4.3.2 Min-Max Normalization 

Min-Max normalization is a normalization approach, which will change the input or output feature 

into a linearly transformed new range values. Most of the time, the rescaled values become in 

between 0 and 1 or -1 and 1. As explained in the min-max Equation (4.2), 𝑚𝑖𝑛 (𝑥) and 𝑚𝑎𝑥(𝑥) 

are the minimum and maximum values respectively, where x is input or output samples and 𝑁 is 

the new normalized values. Therefore, in order to calculate 𝑁, i.e. the normalized value of a 

member of the set of observed values of 𝑥, the formula of min-max normalization is expressed as 

equation (4.2) [37]: 

𝑁 =
𝑥 − 𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛 (𝑥)
                                                            (4. 2) 
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5. Experiments Setup 

5.1 Data Set 

The data set used for this research contains measurement information for the BTS power system 

which is taken from the ET NetEco power monitoring system. Totally, five (5) sites data are 

collected for twenty (20) weeks (from April to August 2019) by weekly data collection plan. The 

data set contains eleven (11) features with a five (5) minute sampling period. Every site data set 

have an equal number of observations with a similar time-stamp. The number of observations 

found in the dataset has thirty-four thousand one hundred fifty-six (34,156) rows with eleven (11) 

features. Table 5.1 illustrates the sample data structure of the collected observations for this 

research. The sample data for the test include measurements taken from both good and bad events. 

Data preprocessing is an essential step while working on a data-driven algorithm, which improves 

the possibilities of achieving good results. Therefore, the data is preprocessed and the process 

includes removing biased (outliers) sample, normalization and merging the data based on time 

stamp (since the data is collected on a weekly base with a different spreadsheet). 

Table 5.1 Collected data and features Source: ET NetEco 

 

5.2 Target Selection 

Among those 11 features, target selection has been done by studying the relationship between the 

selected failures (BBUV, LLVD, and BLVD) and all the features. Therefore, bus-bar voltage, DC 
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load current, and DC load power are found to have a high correlation with the actual failure. 

However, the bus-bar voltage has been selected as a target feature because of BBUV and LLVD 

failures are not well reflected on DC load current and DC load power. As indicated in Figure 4.8 

and Figure 4.9 in Section 4, only BLVD failure is reflected in DC load current and DC load power. 

However, as can be noted in Figure 4.7, both BBUV, LLVD and BLVD failures information is 

reflected on bus-bar voltage. 

5.3 Implementation 

The implementation of the experiment engaged by applying two types of RNN (LSTM and GRU) 

machine learning platform, built-in python which has capabilities of learning and test the data 

automatically. LSTM and GRU are capable of remembering each information through the whole 

dataset. It is recommended in time-series prediction, because of its capabilities to predict the 

feature based on the information get from the very past. A sigmoid and linear activation function 

are selected for testing the results which are a linear and nonlinear activation function respectively. 

Because linear activation function has a limitation on handling nonlinear dataset so, the sigmoid 

activation function which is capable to represent nonlinear inputs and outputs is included for the 

test. 

The tests also engaged with two different arrangements. Single site and multiple site tests. First by 

using a single site test but by varying the data size (starting from 12 weeks through 20 weeks) and 

by using 5 sites data starting from a single site then go through 5 sites data by using the whole 20 

weeks observations. The main reason behind using different data sizes is to check the impact on 

the performance on LSTM and GRU which are used to predict the future BTS power system 

failure. As performance measurement criteria, MSE and number of epoch are used to measure the 

performance of the models. 

5.3.1 Single Site Test 

First, the proposed RNN (LSTM and GRU) based scheme tested using single BTS site data. Five 

types of data size are arranged, starting from 12 weeks to 20 weeks (12, 14, 16, 18, and 20). For 

bothe the tests, linear and sigmoid activation function used separatlly for the model output. Min-

max normalization for the output. 
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5.3.2 Multiple Site Test 

In addition to using single BTS site data, the analysis is conducted based on data collected from 

five (5) different BTS sites (starting from a single site through five BTS data). Again, the primary 

reason behind using multiple sites data for the training and predict the impending failures on a 

single site is to test whether using multiple sites for training will give a better chance for the RNNs 

to understand the target sites and predict coming failure for a single site. 

5.4 Parameter Setup 

Parameter setup is an important stage, which can make significant changes in machine learning 

performance. For this research purpose to get the correct parameter to be set, two weeks of data 

have been used initially to get better values. In addition, RNN hyper-parameters has been applied. 

The RNN hyper-parameters are suggested values by the developers of the RNN. As can be seen 

from Table 5.2,  256 recurrent units, 20 epoch, 100 steps per epoch, 144 samples as a sequence 

length and 288 samples as a batch size are applied. 

The number of epoch used for the training is 20, where the maximum number of epoch achieved 

through the initial (two weeks) test is 15. In addition, the MSE does not improve while using the 

number of epochs above 20. Therefore, the number of patience has been set to 5 by using early 

stopping for preventing the model from overfitting.  This means stop the training if the 

performance of the LSTM and GRU stope improving for 5 continuous epochs. 

Table 5.2 Parameters setup.  

 

In addition to the above parameters, a feature reduction technic is applied and compared the feature 

reduced data results with the results found without feature reduction. For the purpose of feature 

reduction, Pearson's correlation analysis between all features and the target features has been done. 

Parameters Values Remarks

Number of recurrent unit 256 unit Hyper parameters and by test

Number of epoch 20 epoch By test

Step per epoch 100 Hyper parameters and by test

Sequence length 144 samples 12 hours

Bach size 288 samples 24 hours
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The correlation results are presented in Table 5.3 and as Pearson's correlation criteria state that, 

features having results values between ± (0.5 to 1) have a strong correlation, ± (0.3 to 0.5) medium 

and ±(0.1 to 0.3) small (weakly) correlated. The negative (-ve) sign indicates inverse correlation 

while positive (+ve) sign indicates a direct correlation. The feature reduced data contains 6 features 

including the target feature bus-bar voltage. 

Table 5.3 Pearson's correlation results between features. 

 

As clearly seen from the correlation result in Table 5.3, working temperature, battery current, 

battery voltage, AC/DC current, DC load current, and DC load power have a better correlation 

result with the target feature bus-bar voltage. Since, battery current and AC/DC current has a strong 

correlation with each other, using two of them will become redundant for the RNN (LSTM and 

GRU) and will increase the overhead. Therefore, AC/DC current is selected to be part of the feature 

reduced data because it has a higher correlation with the target feature than battery current. 

The proposed RNN (LSTM and GRU) based algorithms are compared with two different 

activation functions configured for the output. These activation functions are linear and sigmoid. 

Furthermore, after the minimum and maximum values checked, min-max normalization has been 

used for the input because the minimum and maximum values found are -91.16 and 125684.63 

respectively. Where -91.16 is battery current in ampere and 125684.63 is the total power supplied 

by the battery (rated in AH). 

The RNN will give output data, which is in the range of 0 to 1 because the normalization technique 

has been used for the inputs, and there is an activation function on every neuron, therefore, the 

Features
Working 

Temperature
Working 
Humidity

Battery 
Current

Battery 
Voltage

Battery 
Temperature

Battery Total 
Discharge 

Power
Total Battery 

Cycle ACDC Current Bus-bar Voltage DC Load Current DC Load Power
Working 

Temperature
1 -.832** -.043** -0.01 .794** -.098** .093** .171** -0.354 .270** .258**

Working 
Humidity

-.832** 1 0.01 -.026** -.847** .246** -.027** -.134** .037** -.179** -.171**

Battery Current
-.043** 0.01 1 .485** .040** 0.007 0.001 .697** .529** -.101** -.018**

Battery Voltage
-0.01 -.026** .485** 1 -.019** -.050** -.037** .724** .973** .477** .558**

Battery 
Temperature

.794** -.847** .040** -.019** 1 -.333** -.048** .123** -.089** .110** .103**

Battery Total 
Discharge Power

-.098** .246** 0.007 -.050** -.333** 1 .809** -0.004 .044** -0.008 -0.006

Total Battery 
Cycle

.093** -.027** 0.001 -.037** -.048** .809** 1 .012* .024** .016** .016**

ACDC Current
.171** -.134** .697** .724** .123** -0.004 .012* 1 .777** .634** .694**

Bus-bar Voltage
-0.354 .037** .529** .973** -.089** .044** .024** .777** 1 .506** .587**

DC Load Current
.270** -.179** -.101** .477** .110** -0.008 .016** .634** .506** 1 .994**

DC Load Power
.258** -.171** -.018** .558** .103** -0.006 .016** .694** .587** .994** 1
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output should be recovered (to the actual human interpretable values) by post-processing of the 

algorithm output, by using output coding on the target value. Generally, these are the types of 

configuration used to evaluate algorithms performance: 

 Linear activation function with feature reduction using LSTM; 

 Linear activation function without feature reduction using LSTM; 

 Sigmoid activation function without feature reduction using LSTM; 

 Sigmoid activation function with feature reduction using LSTM; 

 Linear activation function with feature reduction using GRU; 

  Linear activation function without feature reduction using GRU; 

 Sigmoid activation function without feature reduction using GRU; 

 Sigmoid activation function with feature reduction using GRU. 

Out of 20 weeks of data, about 10% of the observation is used as the test sample and 90% of 

observation is used for the training (number of training and test observation are around 30,156 and 

3,400 respectively). 
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6. Results and Analysis 

6.1 Results with Single Site Test 

During single site tests, the training and testing process engaged for forty (40) times using five (5) 

types of data arrangements. Using these data, linear and sigmoid activation functions configured 

separately for the output while min-max normalization used for the input. In addition, feature 

reduction techniques applied to test the model performance before feature reduction (BFR) and 

after feature reduction. The size of  single site data is presented in Table 6.1. 

Table 6.1 Dataset size for single site test. 

 

Table 6.2 shows the results found for linear activation function at the output of both LSTM and 

GRU. As a comparison criterion, MSE and number of epoch is used. The test engaged by single 

site data starting from12 weeks off and goes through 20 weeks of observation. The major reason 

behind using different data sizes is to check the impact on the model performance and results found 

in addition to using different activation functions. 

Table 6.2 Results using a linear activation function. 

 

Table 6.3 shows the results found while the sigmoid activation function used at the output of LSTM 

and GRU in the test. Again, MSE and number of epoch is used for the performance measurements. 

Number of 
features

Number of 
rows

Number of 
features

Number of 
rows

25024 11 25024 6

14 27328 11 27328 6

16 29632 11 29632 6

18 31648 11 31648 6

20 34156 11 34156 6

Weeks

BFR AFR

Number of 
Epoch BFR MSE BFR

Number of 
Epoch AFR MSE AFR

Number of 
Epoch BFR MSE BFR

Number of 
Epoch AFR MSE AFR

12 9 0.0008605 6 0.0014 13 0.0093 11 0.0056

14 9 0.006 6 0.0045 15 0.00167 9 0.0034

16 14 0.0006919 7 0.0014 13 0.00198 12 0.0091

18 10 0.00043 7 0.000611 14 0.00123 12 0.0019

20 9 0.0011 7 0.000494 13 0.0098 12 0.0013

Linear Activation Function

Number of 
Week

GRU LSTM
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For the test, single site dataset has been applied but the data size starts from 12 weeks and go 

through 20 wiks. 

Table 6.3  Results using a sigmoid activation function. 

 

6.2 Results with Multiple Sites Test 

After setting all the parameters as previous but only by using GRU with sigmoid activation 

function and applying feature reduction, results have been checked for multiple sites dataset. 

Table 6.4 Dataset size for multiple site test. 

 

As can be seen from Table 6.4 above, the test has been done by using five (5) BTS power system 

data for training the GRU and predict a single BTS power system site failure. The number of rows 

used is the same for both the tests which have 34156 rows. But the number of features used are 

increasing as the number of sites increased starting from 6 features go through 30 features. 

In multiple site tests, the reason behind using multiple sites data is to check whether using multiple 

sites for the training gives a better chance for the GRU to model the data and predict single BTS 

power system failure or does the data collected from multiple BTSs power systems have 

information about other BTS power system?. 

Number of 
Epoch BFR MSE BFR

Number of 
Epoch AFR MSE AFR

Number of 
Epoch BFR MSE BFR

Number of 
Epoch AFR MSE AFR

12 8 0.0012 6 0.00012 11 0.0094 10 0.0019

14 12 0.000171 6 0.000437 12 0.0065 11 0.00091

16 6 0.000127 7 0.0000763 10 0.0053 9 0.00021

18 8 0.000272 6 0.0000668 12 0.0071 9 0.00017

20 12 0.000414 7 0.0000632 11 0.0092 10 0.00011

LSTM
Sigmoid Activation Function

Number of 
Week

GRU

Number of 
sites

Number of 
rows

Number of 
features

1 34156 6

2 34156 12

3 34156 18

4 34156 24

5 34156 30
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Table 6.5 shows the MSE and the number of epoch results found for multiple site tests. For 

performance measurement criterion, MSE and number of epoch are used. 

Table 6.5 MSE and number of epoch using multiple sites for training. 

 

6.3 Findings and Discussion 

6.3.1 Single Site Findings 

As can be observed from the MSE and the number of epoch results for single site tests, GRU 

archived better performance than LSTM specially AFR, even the activation is linear or sigmoid. 

From the activation points of view, sigmoid achieved better than linear. Even the LSTM gets good 

results AFR using sigmoid activation function, it swings and very difficult to generalized using a 

linear or sigmoid activation function and BFR or AFR for LSTM. As shown from the MSE plot 

above in Figure 6.1, MSE results after 16 weeks data seem to decrease especially for the GRU. 

 

Figure 6.1 MSE using GRU or LSTM with sigmoid and linear activation function. 

For all the tests, feature reduction achieved better results, especially for GRU. As can be seen 

clearly from all the results, using linear activation functions achieved worse MSE values than the 

MSE Epoch MSE Epoch MSE Epoch MSE Epoch MSE Epoch

1 0.000309 10 0.0076 6 0.000069 10 1.32E-05 10 0.0185 6

2 0.000828 8 0.008 9 7.04E-05 10 2.71E-05 7 0.0184 7

3 0.001 6 0.008 10 0.000069 10 1.74E-05 10 0.0191 6

4 0.002 7 0.008 10 7.29E-05 9 0.000016 10 0.0187 10

5 0.0016 8 0.0079 7 8.44E-05 9 0.000019 8 0.0195 8

Site 4 Site 5
N0 of Site

Site 1 Site 2 Site 3
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sigmoid activation function. What is more, Figure 6.2 shows the MSE enhanced as the data size 

(the number of weeks) increases for a single site test. These MSE improvements realized whether 

the activation function is linear or sigmoid. 

 

Figure 6.2 MSE of LSTM and GRU wit BFR or AFR. 

As can be noted from Figure 6.2 above and detailed observation shows inTable 6.2 and Table 6.3, 

the minimum MSE achieved is  6.32𝑒ିହ using GRU with feature reduction by 20 weeks data with 

a sigmoid activation function. The maximum MSE achieved is 9.8𝑒ିଷ using LSTM before feature 

reduction, using 20 weeks of data by a linear activation function. 

 

Figure 6.3 Number of epoch BFR or AFR with linear and sigmoid activation function. 
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The number of epoch found is very difficult to generalize for both GRU or LSTM, sigmoid or 

linear, and BFR or AFR. From the number of epoch sides, as can be noted from Figure 6.3, the 

minimum epoch achieved is 6 that is using LSTM by 12 and 14 weeks of data with linear activation 

function after feature reduction, using GRU by 12, 14, and 18 weeks of data after feature reduction, 

and using GRU by 16 weeks data before feature reduction. The maximum epoch achieved is 15 

using LSTM before feature reduction by a linear activation function. 

6.3.2 Multiple Sites Findings 

MSE and number of epoch is used as comparison criterion for the multiple sites as a single site 

experiment. As can be observed from the MSE and the number of epoch results for multiple site 

tests from Table 6.5 the MSE is increasing as the number of BTS power system data increase to 

predict a single BTS power system failure. However, it is very difficult to generalize from the 

number of epochs points of view because it is around the same range.  

 

Figure 6.4 MSE using multiple site data for training and predicting single site failure. 

As can be noted from Table 6.5 above, the minimum MSE achieved is  1.32𝑒ିହ using single site 

test. The maximum MSE achieved is 1.95𝑒ିଶ using five sites for training and predict single site 

power system failure. 
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The major reason behind using multiple BTS power system site data for predicting single BTS 

power system failure is to check the impact on the model results. As understand from the result 

found, it seems very difficult to use different BTS power systems data to learn the model for the 

prediction. The possible cause of increasing MSE while using multiple BTSs power system data 

for the training to and predict single BTS power system failure, the BTS power system data of one 

site have different information with other BTS power system data which may impact the training 

and testing. 

6.3.2 Discussion 

After the GRU and LSTM is configured with similar parameters, MSE and the number of epoch 

have been used as comparison criteria. In order to enhance the model performance, data cleaning, 

activation function, normalization, early stopping, and output codding is applied. In addition, the 

model is tested by feature reduction and without feature reduction techniques. Single site MSE 

results are presented in Figure 6.5. 

 

Figure 6.5 Single site test MSE results. 

The tests have been also engaged by using different data sizes and configurations. As learned from 

the results, both LSTM and GRU can predict BTS power system failure using history time serious 

data even GRU achieved better results than LSTM. On the single site and multiple site tests, GRU 

shows good performance for all the prediction of BTS power system failure. 
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From the single site test points of view, the sigmoid activation function achieved better results 

compared with linear. This might show that the dataset used to have a nonlinear property which 

decreases the MSE results found for both the tests. Another observation is that the feature reduction 

technique reduces the number of epoch required to do BTS power system failure prediction work. 

The possible reason behind the MSE increase for before feature reduction applied is, there are be 

features that may bias the BTS power system failure prediction work. An additional remark is that 

the feature reduction technique can improve the performance of the LSTM and GRU by reducing 

unrelated data that contain less information and redundant data, which may introduce a bias 

between the features. Again, for the number of epoch, feature reduction has an impact on achieving 

smaller number of epochs. 

 

Figure 6.6  Comparison plot, training, and testing. 

Moreover, the predicted result of bus-bar voltage values is plotted with the actual value for the 

purpose of compression. As can be seen from Figure 6.6, the blue line indicates the true (actual) 

values in the training and testing. The orange lines represent the predicted values in the training 

and testing. As demonstrated in Figure 6.6, model train well and the result coincides with the real 

data even they have a limitation on touching the upper and lower limits. This limitation also 

reflected in the test (validation) plot. Even it is difficult to check performance differences visually 

between GRU and LSTM from the plots, as the MSE and number of epoch tell the GRU performs 

better. 

time
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7. Conclusion and Future Works 

7.1 Conclusion 

Mobile and fixed telecommunication infrastructures are increasing with the development of new 

technology and increasing demand. Thereby the maintenance, monitoring, and resource 

assignment of the whole system become challenging. Especially taking care of the infrastructure 

with a traditional maintenance activity requires considerable effort and corrective maintenance 

will diminish the performance of the whole system and leads to poor resource utilization. 

A power system is a backbone for the entire communication infrastructure and its failure may 

cause an interruption to the complete services. Therefore, following good maintenance procedures 

will have a big impact on the whole service provisioning. Nowadays, maintenance trends shift 

from reactive maintenance to proactive maintenance, which is taking action for the impending 

problems by using prediction techniques. 

As illustrated in Section 1.1, the BTS power system failure takes the biggest share of the BTS 

service interruption. Therefore predicting these failures before they happen to some degree will 

have a big benefit for guarantying QoS and in that way enhance return on investments. 

As learned from the results found, both LSTM and GRU can predict BTS power system failure 

using history time serious data. The minimum MSE achieved is 0.0000632 for GRU with feature 

reduction using 20 weeks data with 7-epoch. Even both LSTM and GRU can predict the impending 

failure in the BTS power system, GRU with sigmoid activation function with reduced features 

obtained minimum MSE and number of epoch. 

7.2 Future Works 

Many different data preprocessing, prediction methods and experiments left for the future because 

the data collection process has its own challenge. Therefore, future work requires a detailed 

analysis of different methods. This thesis work primarily motivated on the use of RNN types called 

LSTM and GRU for predicting the impending failure of the BTS power system but trying other 

methods is highly suggested because there may be a better approach regarding different 

performance measurement criteria’s. Thereby, it will supplement the research area (BTS power 
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system) because there is a limitation on finding related studies. In addition, the following ideas 

may have a better contribution to improving the results found: 

 It could be better to consider other BTS subsystems (transmission and MW) data for 

predicting the BTS failure and root causes; 

 Obviously, using other types of prediction approaches has an advantage because it gives 

an opportunity to select for practical implementation; 

 In addition, the preliminary results of these experiments may be improved if it is tested 

with different data preprocessing and parameter tuning. 
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