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Abstract 

CubeSat is next generation, promising, and small-sized satellites that can be easily assembled using 

commercially available components with a low investment cost. Attitude control is one of the core 

subsystems in the CubeSat system that deals with how to orient the CubeSat in any desired 

direction. Proper attitude controller of satellite design is necessary since devices that need pointing 

direction like antennae, camera, and some measurement devices are always mounted on the 

satellite. Uncontrolled CubeSat may even cause the entire mission loss. 

Fuzzy controllers and linear quadratic controller are among the commonly employed controllers 

in CubeSat attitude control. Although manually tuned linear quadratic controller design shows 

good performance without actuator saturation, it is not optimal in handling the tradeoff between 

the desired performance and actuator saturation. A genetic algorithm is employed to handle this 

optimization problem. Besides, developing fuzzy controllers is challenging for multiple inputs and 

multiple outputs systems using expert knowledge and intuitive rational guess. An adaptive neuro-

fuzzy inference system is proposed to develop a fuzzy system using training data sampled from 

the simulation of a genetically tuned linear quadratic regulator. These fuzzy systems mimic the 

linear quadratic regulator that is tuned by the genetic algorithm. MATLAB is used for the genetic 

algorithm optimization of linear quadratic regulator and learning based fuzzy controller design. 

The attitude kinematics is modeled using quaternion while the dynamics of the CubeSat's attitude 

considers reaction wheel actuation and gravity gradient torque.      

The optimal state penalizing matrix Q= 10-3*diag ([1.053 1.053 1.053 1.053 1.053 1.053]), state 

input matrix R=diag ([20.2422 20.2422 20.2422]) and K gain matrix that minimizes linear 

quadratic performance index are obtained from genetic optimization. Furthermore, the three fuzzy 

systems that mimic the state inputs of the genetically tuned linear quadratic regulator are developed 

using the adaptive neuro-fuzzy inference system. Each fuzzy system has 729 fuzzy rule bases with 

18 generalized bell-shaped input and 729 linear output membership functions. Both controllers 

achieved zero steady-state error and settling time less than 12.5 seconds. The peak control signals 

in the linear quadratic regulator and fuzzy systems are below the maximum limit of 0.635 mN.m.   

Key Words: CubeSat, Linear Quadratic Regulator, Attitude Control, Genetic Algorithm, Adaptive 

Neuro-Fuzzy Inference system, ANFIS, Fuzzy Logic Controller, Quaternions, Reaction Wheel. 
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1 Introduction 

1.1 Background  

1.1.1 Introduction about CubeSat 

CubeSat is a miniaturized satellite designed for researches and space applications. The unit 

CubeSat has cube-shaped geometry that is 10 x 10 x10 centimeters cube and weighs 1.33 

kilograms. Also, a number of a unit CubeSat can be combined to develop two-unit, three-unit, 

four-unit, or N-unit CubeSat. Since CubeSat’s components are available in the market as 

commercial-off-the-shelf components, any hobbyist, technologist, or University researchers can 

develop a satellite with little cost using CubeSats.  

In 1999 two Professors, Professor Jordi Puig-Suari and Professor Bob Twiggs brought the idea of 

standard CubeSat designs. The Professors’ idea was to create a chance for the students to study 

satellites from designing to operation stages [1].        

Miniature satellites are usually classified into different groups based on their mass. These are 

Femto (0.01-0.1 kg), Pico (0.1-1 kg), Nano (1-10 kg), Micro (10-100 kg), and Mini (100-500 kg) 

satellites. The term CubeSat is to indicate nanosatellites.      

CubeSat can be deployed to space using specially designed deploying devices that are mounted on 

International Space Station or other space vehicles like rockets, large satellites, and spacecraft. 

The most common deployment devices are Nano Racks CubeSat Deployer (NRCSD), Poly Picosat 

Orbital Deployer (P-POD), Japanese Small Satellite Orbital Deployer (J-SSOD), and other 

deploying devices designed by deployment service providers. 

CubeSat is applicable in the areas that the normal applications of the large satellites are applicable 

at which miniaturization of CubeSat has no effect. These applications involve experiments that 

can be done on a miniatured level, observations, amateur radio service, test and demonstration of 

new technologies, testing mission’s feasibility, and research applications for students and 

researchers at low cost. Several deep space missions are planned with CubeSat. Besides this, the 

CubeSat formation flight attracts many researchers.  

The development of satellite needs a synergy of different disciplines and so do the CubeSat. The 

components and systems in the CubeSat are designed based on the mission goals from different 
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discipline perspectives. The CubeSat as a single system has command and data handling, power, 

structure, attitude determination and control, thermal control, and communication subsystems. 

Attitude determination and control system (ADCS) is one of the fundamental subsystems 

responsible for the determination and control of the satellite orientation.   

Generally, the CubeSat can be used for the desired mission that may possess antenna for 

communication, camera for image data collection for the specific issue, payload, and the 

supplementary electronics system that is sensitive to sun radiation, solar panels for the power 

generation, the scientific data collection devices, and similar components. The satellite orientation 

can determine the performances and lifetime of those devices. Thus, attitude determination and 

control of the CubeSat is a crucial subsystem to the total functioning of the satellite. 

1.1.2 Satellite Attitude Determination and Control  

The attitude of the satellite is about its orientation in the three-dimensional reference frame. 

Generally, it is studied as attitude determination and attitude control. Attitude determination is 

determining the past and the current attitude with respect to a given inertial reference system while 

attitude control deals with enabling the satellite to orient itself to the desired stable orientations 

with the desired performance by applying different control algorithms.    

A. Attitude Determination 

Attitude is determined by implementing attitude determination algorithms that use the current and 

the past directional measurement vectors, such as the direction of the sun and star constellations, 

albedo ray and infrared vectors of Earth and magnetic field vectors of Earth about satellite body-

fixed body frame of reference provided that the inertial orientations of those measured vectors are 

known. Then a determined attitude is given as feedback to an attitude control system. This 

feedback is usually considered to be fully determined and available in controller design.  

B. Attitude Control 

The attitude control in the aerospace field of study is commonly named as attitude stabilization. 

Attitude control of the satellite uses the determined attitude as feedback to the controllers and sends 

a control signal to the actuator to reorient the satellite in the desired attitude.     

The attitude control methods employed in satellite attitude stabilization can be either passive or 

active control. The passive control method does not need any active power source. It uses external 
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disturbances and passive devices in the satellite to develop actuating torque. Torque developed 

due to the interaction of permanent magnet and Earth’s magnetic field, gravity gradient, 

aerodynamics, and solar radiation torques are used for passive stabilization.  It is cost-effective but 

less efficient for pointing control. Moreover, this controller system is predefined, non-robust, and 

non-adaptive. Many of the early satellites use passive controllers.  

On the other hand, the second group of control method is an active control which uses active power 

source and the control signal is actively induced to the actuators.  Active controls are either spin 

stabilization or three-axis stabilizations [2].  

In spin stabilization, the satellite spins about the desired spin axis. The stability of the satellite 

attitude depends on as gyroscopic resistance of the spinning.  It can also be a single-axis or double 

axis spin-stabilized [3]. But the better attitude stabilization with high inertial and non-inertial 

pointing accuracy is achieved using three-axis stabilization. The majority of the control design 

progress in the satellite attitude control is made in the three-axis stabilization [3, 4]. It is actuated 

using internally developed torques and torque developed from the interaction of external 

disturbance and internally embedded devices. The common actuation devices are magnetic-

torques, momentum exchanging devices (control moment gyros, reaction wheel, and momentum 

wheels) and thrusters [3].  

In addition to separately applying the active and the passive controllers, they can sometimes be 

combined in attitude control. Aerodynamics control is usually combined with active control 

methods [5, 6]. Moreover, solar radiation torque can be embedded in attitude control with active 

magnetically actuated attitude control [7].    

1.2 Motivation and Problem Justification 

Satellite design and launching is a sophisticated technology that needs a lot of investment and 

highly qualified human resources. The low-cost satellites can be developed by miniaturizing the 

satellite. It is important for developing countries, universities, and amateur technologists to 

develop low scaled cost-effective satellites. Students can develop their satellite using cost-efficient 

off-shelf components. Also, CubeSat technology can be a startup technology for countries that 

their space technology is not developed yet.  
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CubeSat is the future promising satellites that different disciplines come together giving life to this 

technology. One of the challenges of CubeSat development is its orientation control, scientifically 

named as attitude control.  

Different control techniques are developed and implemented for attitude control problems. There 

are still researches to be conducted to address the attitude control problem. From the different 

control methods, reaction wheel actuated linear quadratic regulation (LQR) and fuzzy logic 

controller (FLC) are the common methods in this area.  

LQR for CubeSat attitude control needs a proper tuning with the consideration of the system as an 

energy-constrained system to avoid actuator saturation. This makes the LQR tuning problem as 

constraint optimization. This optimization is considered to be addressed using a genetic algorithm. 

Also, FLC for CubeSat attitude control in the situation of multiple inputs and multiple outputs 

system becomes a complex problem that involves too many membership functions and fuzzy rules. 

Thus, the system becomes tedious to develop the fuzzy system using rational guess and expertise 

experience. Besides, it will not be well designed FLC since it passes in try and error tuning; 

therefore, learning-based fuzzy tuning using the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is proposed for FLC system development.                  

1.3 The objective of the Study 

1.3.1 General Objective  

The thesis’s general objective is to develop a genetic algorithm and a neuro-fuzzy system for LQR 

based attitude control.  

1.3.2 Specific Objective 

The specific objectives are 

▪ Developing kinematics and dynamics model of the attitude of the CubeSat system.  

▪ Developing state-space modeling of the attitude of CubeSat from kinematics and dynamics 

models. 

▪ Tuning the LQR controller using genetic algorithms. 

▪ Sampling state and control signals from the simulation of LQR controlled attitude 

dynamics and kinematics   
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▪ Apply adaptive neuro-fuzzy inference system (ANFIS) to generate fuzzy rules and tune 

parameters of selected input membership functions using a sampled state and control 

signal.  

▪ Validate and test the ANFIS training. 

▪ Designing a fuzzy control using generated fuzzy rules and membership functions. 

▪ Simulate the fuzzy controlled CubeSat attitude. 

1.4 Significance of the Study 

Different attitude control algorithms have been used and one of those control methods is applying 

a linear quadratic controller. Tuning this controller has been a trial and error task. This is a tedious 

and time-consuming process that does not directly consider actuator energy to avoid actuator 

saturations. In this thesis, optimal and constraint submissive LQR tuning is developed using a 

genetic algorithm based on actuator constraint objective or cost function to handle optimization 

between controller performance and actuator saturation.  

The other commonly studied controller is a fuzzy controller. The fuzzy membership functions and 

fuzzy rules are selected by the fuzzy system designers and may not be properly designed. Besides, 

rules are also developed from the knowledge of the dynamics of the plant and experience of the 

expertise that will be tuned by trial and error. FLC that passes in this process is not efficient 

especially for multiple inputs and multiple outputs systems. The second attribute of this thesis is 

addressing the fuzzy controller design problem using ANFIS training by taking data from the 

simulation of genetically tuned LQR of the attitude of CubeSat. Best fuzzy rules and proper tuning 

of membership functions are developed from the training.      

1.5 Thesis Outline 

This document is organized into seven chapters. Chapter one introduces this thesis. It starts by 

introducing the general introduction about CubeSat and the highlights of attitude determination 

and control as a background. Moreover, the statement of the problems that the thesis tries to 

address, the general and specific objective as the goal of the research, the contribution of the thesis 

that it brings and its outline are contents of the first chapter.  

The second chapter consists of the literature reviews on the area of attitude control of the satellite 

specifically the CubeSat. The different active control trends are considered. The magnetic and 
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reaction wheel actuators with currently applied active control algorithms are reviewed. The 

limitation and gaps of these controllers are stated.   

Chapter three is about system dynamics and kinematics modeling. This chapter discussed different 

reference frames, different attitude parametrization, and quaternion rates as attitude kinematics 

model, different disturbance torques in the low earth space environment, and attitude dynamics. 

Furthermore, the kinematics and dynamics model of the attitude is linearized and combined to give 

the state-space model.      

Chapter four discusses the general background of the fuzzy membership functions, the fuzzy rule 

base, the fuzzy inference system, the neuro-fuzzy system and its learning method, and the genetic 

algorithm. 

Chapter five is on controller design. Linear quadratic regulator design with genetic algorithm 

optimization is included. Also, the second controller design, fuzzy logic controllers using adaptive 

neuro-fuzzy inference system hybrid learning rule by combining the least square method and 

backpropagation are considered.  

Chapter six is the controller simulation of the controllers designed in chapter five. Graphical 

representation of different state responses and input control signals are shown and their 

interpretations are discussed. 

The last chapter is a conclusion and recommendation. The conclusions from simulation results and 

its interpretations are drawn and future recommendations are stated.   
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2 Literature Review 

The literature on satellite attitude control is vast and extensive. The attitude control includes linear, 

non-linear, adaptive, robust, optimal, and intelligent controls. The synergies of these controllers 

have also been used. This section tries to review the active attitude control of satellites and 

investigates different control goals with a distinct type of controller.  

2.1 Commonly Used Actuators in Attitude Control of CubeSat  

The control actuators define the model types of attitude dynamics. The magnetic-torquer and 

reaction wheels are the common actuators used in the CubeSat attitude control. Satellites use these 

actuators as solely magnetic actuation, solely reaction wheel actuation and combining magnetic 

actuation and reaction wheels. Each actuation has its own cons and pros.   

Different researchers studied the magnetically actuated attitude control. The major challenge of 

magnetic attitude control is the attitude is not controllable along the Earth’s magnetic field 

direction since the magnetic field strength of Earth’s magnetic field and magnetic dipole moment 

of the actuator are parallel; therefore, conventional magnetic controller losses its controllability. 

This makes the satellite take a longer period to reach steady-state. It became steady after a few 

counts of full orbital rotations. Thus, fully magnetically actuated attitude control is periodically 

controllable and challenging for instantaneous control. One way of solving the problem of 

uncontrollability of attitude with full magnetic actuators at any instant is combining reaction wheel 

and magnate-torque [8]. Another new approach is a two-step rotation using magnate-torque to 

counteract periodic controllability of satellites using magnetic actuation. The two-step rotation 

proportional-derivative controller can give a better result in terms of controllability [9].      

Reaction wheels are the other widely used actuator for CubeSat attitude control. It is more effective 

compared to magnetic actuators since it allows fully three axes controllability of attitude of the 

satellite and it can also bring the attitude of CubeSat to equilibrium in a short time. Although it is 

advantageous to use reaction wheels, it is exposed to momentum accumulation that needs a means 

of dissipation. Magnetic actuators are usually used to damp the accumulated momentum  [2, 4]. 

Another disadvantage of the reaction wheel is practically they are prone to wear and fatigue failure.     
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2.2 Attitude Controller 

Classical controllers like proportional, proportional-derivative, and proportional-derivative-

integral controllers have been a solution design for attitude control problems [4]. The coupled and 

non-linear attitude models are treated as a linear and decoupled different single input single output 

equations. The performances of those controllers are not as effective as the mission requirements.  

Also, the linearized and non-linear attitude dynamics treated by a linear and non-linear controller. 

These models with constant infinite quadratic cost [10], gain quadratic cost, and finite quadratic 

cost [11], sliding mode [12], and energy-based Lyapunov-stable controllers [13] are investigated 

using full magnetic actuation. Further, magnetic controllers are applied for spacecraft subjected to 

gravity gradient torque using energy-based Lyapunov-stable controllers [13]. Likewise, the non-

linear controllers are applied directly to linear time-variant and non-linear behavior of the system.  

Some of these are state dependent Riccati equation (SDRE) [14], PD and quadratic regulators for 

linear time-variant and compared to linear time-invariant control [3], Modified state-dependent 

Riccati (MSDR) equation using pseudo linearization [15], sliding mode control for fully magnetic 

actuation to solve under actuation problem of magnate-torque at transient motion [16] and finite 

sliding mode control to have a continuous control signal and reduce chattering [17].  There are 

also other classes of controllers developed for attitude control of a satellite. The next section of 

this chapter discusses these controllers. 

2.2.1 Adaptive and Robust Controllers 

Besides the controllers developed considering accurate mathematical models, there are robust and 

adaptive controllers studied based on the parameter and model uncertainty in the attitude dynamics 

and kinematics due to wear, inaccurate mass inertial prediction, and disturbance variations. Thus, 

some papers try to investigate the attitude control problem with a robust and adaptive controller 

design.  

The robust controller design ensures controller performance during inertial matrix uncertainty  [18] 

and disturbance torque [19]. A robust fuzzy controller for variable mass inertia can solve model 

uncertainty [8]. In addition, some satellite attitude problems need adaptive controls. The 

disturbances within the known bound can be actively rejected using adaptive controls [20]. A 

control problem of satellite reorientation exposed to parameter uncertainty, actuator fault, external 
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disturbance, and input saturation is addressed using fault tolerance adaptive control  [21]. Non-

linear adaptive fault tolerance method of control is developed to achieve a tracking three-axis 

attitude control when the attitude control design is exposed to those problems [22]. Also, the same 

control problem with the reaction wheel fault is solved with fault tolerance attitude control based 

on adaptive extended-state observer [23].  

Moreover, adaptive fuzzy controls consider disturbance estimation and improving the membership 

function that is compliant to lower power cost and mission requirements compared to classical 

controllers. This adaptive fuzzy controller is actuated using three magnet-torquers and one 

momentum wheel [24].  

2.2.2 Linear Optimal Controllers 

Linear optimal controllers are usually used in the attitude control design due to easy of design, 

effective performance in the given tolerance range, the possibility to consider energy constraints, 

and the ability to achieve the mission goals without complex controller designs.   

Commonly, the linearized model of magnetic actuation is evaluated with linear quadratic 

controllers [3, 25, 26]. Besides, the optimal control of periodic linear regulators control methods, 

and optimal periodic disturbance rejection is investigated [27]. Studies of those controllers 

including the linear quadratic controller and its non-linear extension show that they perform better 

over PID controllers [28]. 

The challenges come when the tuning of linear optimal controllers based on some objective 

performance range is needed. Manual tuning of this controller is so challenging that it needs a lot 

of iterations till better performance is achieved. Manual tuning is tiresome and computationally 

intense. Even the result of manual iteration has less possibility in achieving optimal design. This 

optimization problem is addressed using different optimization methods. A genetic algorithm is 

one of the optimization techniques [29]. It is an evolutionary algorithm that can tune the linear 

quadratic regulator (LQR), one of the most common linear optimal controllers.  Genetically tuned 

LQR based magnetic actuation out performances conventional PID, PD, quaternion feedback 

controller, and LQR methods [30].  

The proper tuning of the LQR controller using a reaction wheel actuator is commonly achieved 

manually which brings doubt about the optimality in terms of performance and actuator saturation. 
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Intelligent optimization methods are commonly recommended in different research as a means of 

tuning LQR.            

2.2.3 Intelligent Controllers 

The need of achieving space missions without failure increases satellite complexity. This leads to 

a search for better attitude control techniques. Intelligent controllers take the position to address 

this need. Intelligent controllers are based on fuzzy logic, neural network, neuro-fuzzy, and 

intelligent optimization techniques.  

Fuzzy controllers are appropriate for attitude magnetic control since the attitude kinematics and 

dynamics model is time-variant and non-linear. Comparatively, fuzzy controllers show better 

performance compared to classical controllers in terms of convergence and steady-state error [31]. 

Fuzzy controller outfits linear quadratic controllers. It was investigated for a magnetically actuated 

fuzzy logic controller based on a gain scheduled proportional-derivative controller that they are 

lower cost and fast settling solution over linear quadratic controllers [29].    

The fuzzy controller usually developed intuitively and using a rational guess. PD based fuzzy 

classifiers can be tuned using genetic algorithms to avoid the intuitive fuzzy inference controller 

[32]. Furthermore, Real-time correction and attitude control modification modifies the fuzzy 

system and gives better performance [33]. The desired torque to actuate the attitude to the desired 

orientation using magnetic attitude control is determined using fuzzy logic and the desired 

magnetic dipole moment is selected from the desired torque [34]. Similarly, magnetically actuated 

fuzzy control combined with gravity gradient stabilization improves the sole gravity gradient 

control [35]. The fuzzy controller like linear quadratic controller can be tuned using genetic 

algorithms to develop optimal controllers that are submissive to the desired objective function  

[29]. 

Besides, intelligent controls and a combination of intelligent control with conventional control are 

studied for satellite attitude control. MSDR and neuro-fuzzy controller designed using the solution 

of the MSDR equation are combined to reduce the computation of burden MDRE [36]. A similar 

approach to reduce the computational burden of SDRE is developed as a good approximator of 

SDRE using the adaptive neuro-fuzzy inference system [37]. The other studied combination of 

intelligent and conventional controls are adaptive fuzzy and robust fuzzy controllers. The adaptive 
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fuzzy control considers disturbance estimation and membership function improvement [24] while 

a robust fuzzy controller considers model uncertainty [8].  

The common means that the intelligent controller applied is handling attitude problems that suffer 

from the limit cycle due to noisy and inaccurate measurements. To cope with this problem, a non-

linear fuzzy controller tuned by reinforcement learning is developed [38]. Also, some satellites 

need articulation of components and movement of flexible appendages that increase the non-

linearity of the system dynamics. Adaptive fuzzy sliding mode utilized to control the attitude 

control of satellites exposed to this type of non-linearity [39]. Besides, intelligent adaptability 

using a neural network helps to achieve better performance during unknown disturbance and 

actuator faults [40].       

2.3 Research Gap 

Generally, the attitude determinations and control using non-linear and linear control methods for 

a CubeSat have been studied. There are still different problems in CubeSat attitude control that 

needs to be addressed. Some of these are: 

• Proper tuning of reaction wheel actuated LQR needs consideration of good performance 

and avoiding reaction wheel saturation without a need of extra actuator like magnetic 

torquer to damp the saturation.    

• Fuzzy controllers are tuned and designed based on rational guesses and through try and 

error iteration. FLC for CubeSat attitude control in the situation of multiple inputs and 

multiple outputs system becomes a complex problem that involves too many membership 

functions and fuzzy rules. It will be challenging to addressed this type of fuzzy logic 

control design problem using manual try and error based rational guess. 

This thesis tries to investigate the following solutions that are thought to solve the problems 

mentioned earlier. 

• Constraint Genetic Algorithm Optimization 

 

The proper tuning of reaction wheel actuated LQR is taken as an optimization problem that 

balances actuator energy saturation by considering constrained actuator and good 



12 

 

performance. This will be addressed with Genetic algorithm optimization that uses fitness 

function developed by taking accounts of performance and actuator saturation. 

• Adaptive Neuro-Fuzzy Inference System/ANFIS   

FLC of CubeSat attitude control for multiple inputs and multiple outputs system is a 

complex problem. Thus, the system becomes tedious to develop the fuzzy system using 

rational guess and expertise experience. Learning-based fuzzy tuning using the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is proposed for optimal FLC system 

development.  

The state and state input sampled data from genetically tuned LQR simulation will be given 

to ANFIS.  A hybrid learning method that combines backpropagation and least square 

estimator available in the ANFIS system will develop three fuzzy systems using the 

sampled data. The three distinct fuzzy systems separately control the three reaction wheels.  

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

3 Mathematical Model of Cubesat’s Attitude  

The knowledge of the orientation of a satellite is the basis for the success of the mission and the 

payload performance. This orientation is usually called the attitude of the satellite. Thus, any 

satellite with a deviation from the desired orientation needs an actuation to reorient to the right 

attitude.  

The attitude varies depending on the reference frames referred to. It can also be expressed in a 

three by three matrix format, or one or more axis of rotation with the corresponding angle which 

yields different methods of attitude parametrization.  

This chapter tries to address the concepts of reference frames, attitude parametrizations, and 

disturbance torques that can be the cause for attitude deviation. The main mathematical model of 

attitude is also discussed in terms of attitude kinematics and dynamics.       

3.1 Reference Frames 

Reference frames determine the attitude of the satellite since the attitude depends on the 

measurement vectors like sun vector, earth nadir vector, gyroscope measured angular position 

vector, magnetic field vector, or star pointing vectors.  

The reference frames can be either an inertial reference frame or non-inertial frames. Inertial 

reference frames are fixed or move within a constant speed along a straight line relative to a 

universally agreed inertial reference frame. Non-inertial reference frames are either accelerating 

or decelerating relative to universally agreed inertial reference frame.  

The thesis applies both inertial and non-inertial reference frames to model and expresses the 

kinematics and dynamics of both attitudes. Three reference frames that are used in this thesis are 

discussed.   

3.1.1 Body-Fixed Body Frame (BCBF) 

 

It is a non-inertial reference frame attached to the body of the CubeSat. Its origin is usually located 

at the center of gravity of the satellite. Measurements using different sensors like sun sensor, 

magnetic field sensor, earth horizon sensor, star trackers, gyroscopes, rate gyros and other similar 

vector measuring sensors will refer to this reference frame.  
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The axis and origin of this reference frame are user-defined. This thesis assumes origin at the 

center of gravity of the CubeSat. The X-axis, Y-axis, and Z-axis are perpendicular to the faces of 

the CubeSat sides and the three-axis aligned with the three principal moments of inertia of the 

CubeSat. Z-axis is pointing from origin to earth core center while Y-axis is pointing negative 

normal to the orbit that the satellite rotates around the earth and X-axis is can be defined based on 

the right-hand vector rule.    

3.1.2 Geocentric Inertial Frame (GIF) 

This inertial reference frame has an origin located at the center of mass of the earth, X-axis points 

in the direction of the Autumn Vernal Equinox (it lies along the line of intersection of the earth’s 

equator plane and ecliptic plane (a plane that holds the earth’s orbit path around the sun)) and it is 

defined by the direction from Earth’s center to the sun’s center at the time the sun appears to pass 

through the Earth’s equatorial plane moving from south to north at the first day of spring around 

September 23 southern hemisphere or march 21 in the northern hemisphere. Y-axis points 90 

degrees to the east of the X-axis through the Earth’s equatorial plane. The Z-axis is normal to the 

equatorial plane or it can be defined by the right-hand vector rule.   

The geocentric inertial reference frame is assumed to be an inertial reference frame for the satellite 

even though the earth rotating around the sun in an elliptical path with a certain acceleration. In 

addition, the line of intersection of the earth’s equator plane and ecliptic plane experiences nodal 

precession at a slower rate. The Vernal Equinox direction changes as a consequence. This reference 

frame is defined at some epoch due to the Vernal Equinox change. This thesis refers to an epoch 

of J2000 reference.  

3.1.3 Body-Centered Orbital Frame (BFOF) 

The origin is located at the center of gravity of the CubeSat. The Z-axis pointing from the origin 

to the Earth center. The Y-axis directed in the opposite direction to the orbit normal. The X-axis 

can be defined in the right-hand rule.     

3.2 Attitude Parametrization 

Attitudes parameters are attitude coordinates that describe the orientation of any rigid body about 

the desired reference frame.  There are different attitude coordinates as an analogy to translation 

coordinates, such as rectangular, cylindrical, and spherical coordinates. In the case of translational 
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coordinates, the separation distance between two points is expressed at maximum as infinity 

distance. But for attitude coordinates, the orientation differs by 1800 at maximum. 

The choice of attitude coordinates affects the mathematical model linearity or non-linearity and 

the mathematical or geometrical singularity. After all, it affects the limit and type of operation of 

the attitude control system. 

Generally, the relative angular position between any two reference systems requires at least three 

coordinates. These minimum three coordinates will have at least one singular geometrical 

orientation. The corresponding kinematic differential equation is singular at that geometrical 

singularity point. This mathematical and geometrical singularity can be regularized by using 

universally defined redundant coordinates which applies more than three coordinates.  

Directional cosine matrix, Euler angle representation, Euler angle /axis representations or principal 

rotation vectors and principal angle, quaternions, Classical Rodrigues parameters, and modified 

Rodrigues parameters are commonly used attitude parameterizations. From all aforementioned 

attitude representation methods, quaternions and directional cosine matrixes are free from the 

geometrical and mathematical singularity at any point since they use parameters more than the 

minimum requirement of three parameters. The directional cosine matrix has 9 angles to describe 

the attitude which needs six more parameters than the minimum requirement of three parameters 

whilst quaternion uses four parameters to define a given attitude which needs one more parameter 

than the minimum requirement of three parameters. This infers Quaternions are less redundant and 

non-singular attitude parametrization. Therefore, the quaternion is considered to be the attitude 

parametrization for this thesis [41, 42].          

Euler parameters or quaternions are a non-singular parametrization method that has four 

parameters. Thus, quaternions exceed the minimum three parameters to express any orientation 

and they are always involving a redundant fourth parameter [43]. Any orientation of a rigid body 

with respect to any reference frame can be defined using four parameters which are defined in 

terms of a unit Eigenvector and an angle. The Eigenvector is a three-dimensional vector that relates 

the origin of the two reference frames and the angle is the rotation of one reference frame with 

respect to the other reference frame about the Eigenvector. 

The quaternion can be expressed as follows [41]: 
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 𝑞 = [

𝑞0

𝑞1

𝑞2

𝑞3

] =  

[
 
 
 
 
 𝑐𝑜𝑠 𝜃 2⁄

𝑒1𝑠𝑖𝑛
𝜃

2⁄

𝑒2𝑠𝑖𝑛
𝜃

2⁄  

𝑒3 𝑠𝑖𝑛
𝜃

2⁄ ]
 
 
 
 
 

 (3.1)  

 

From the four parameters definition, it is clear that q0 is a scaler, and q1, q2, and q3 are the vector 

components of the quaternion.  

The four quaternions and Eigenvector magnitudes are constrained. 

 1 =  𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 

1 = 𝑒1
2 + 𝑒2

2 + 𝑒3
2 

 
(3.2) 

The transformation matrix using quaternions is given in [41, 42] and it is defined  as:  

 

𝐶(𝑞) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (3.3) 

 

For the attitude of the rigid body, there are two sets of quaternions –q and q that describe the same 

orientations. One describes the shortest single-axis rotation the other describes the longest. The 

shortest rotation necessarily satisfies |𝜃| ≤ 1800. This indicates that 𝑐𝑜𝑠 𝜃 2⁄ ≥ 0 and q0 is always 

positive for the shortest rotation direction. 

The reverse process of finding the quaternion from the transformation matrix is developed by 

Sheppard [41].  

 
𝑞0

2 =
1

4
(1 + 𝑡𝑟𝑎𝑐𝑒[𝐶]) 

𝑞1
2 =

1

4
(1 + 2𝐶11 − 𝑡𝑟𝑎𝑐𝑒[𝐶]) 

𝑞2
2 =

1

4
(1 + 2𝐶22 − 𝑡𝑟𝑎𝑐𝑒[𝐶]) 

𝑞3
2 =

1

4
(1 + 2𝐶33 − 𝑡𝑟𝑎𝑐𝑒[𝐶]) 

(3.4) 
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Then Sheppard takes the square root of the largest 𝑞𝑖
2 from the above equations and the sign of 𝑞𝑖 

is arbitrarily chosen to be positive. The other quaternion values can be found by dividing three of 

the appropriate equations shown below with the largest square root of 𝑞𝑖
2. 

 𝑞0𝑞1 = (𝐶23 − 𝐶32) 4⁄  

𝑞0𝑞2 = (𝐶31 − 𝐶13) 4⁄  

𝑞0𝑞3 = (𝐶12 − 𝐶21) 4⁄  

𝑞2𝑞3 = (𝐶23 + 𝐶32) 4⁄  

𝑞3𝑞1 = (𝐶31 + 𝐶13) 4⁄  

𝑞1𝑞2 = (𝐶12 + 𝐶21) 4⁄  

(3.5) 

Where Cij is for i row and j column in the transformation matrix of C. An alternative quaternion 

values are the negatives of the qi values found. Composite or sequential rotation combines by 

multiplying the rotations in reverse order.       

Quaternions provide a continuous representation of three-dimensional space without singularity or 

gimbal lock. They are computationally simple to apply. Kinematics of the quaternions are linear 

differential equations. But they are four element parameterizations developed from one 

Eigenvector and one rotational angle.         

3.3 Attitude Kinematics 

The kinematics of the attitude is expressed in terms of the rates of the attitude parameterization. 

The rate of quaternion will be used to model the kinematics. Assuming any single or multiple 

sequence rotation can be equivalently expressed using a rotation about unit Eigenvector, e, with 

rotation angle, 𝛳, as stated in the Euler rotation theorem,  

 

𝑞 = [

𝑞0

𝑞1

𝑞2

𝑞3

] =  

[
 
 
 
 
 𝑐𝑜𝑠 𝜃 2⁄

𝑒1𝑠𝑖𝑛
𝜃

2⁄

𝑒2𝑠𝑖𝑛
𝜃

2⁄  

𝑒3 𝑠𝑖𝑛
𝜃

2⁄ ]
 
 
 
 
 

 (3.6) 

 

 
�̇� = lim

𝑡→0

𝑞(𝑡 + ∆𝑡)  −  𝑞(𝑡)

∆𝑡
 (3.7) 
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 𝑞(𝑡 + ∆𝑡) =  

[
 
 
 
 
 𝑐𝑜𝑠 (𝜃 2⁄ + ∆𝜃

2⁄ )

𝑒1 sin  (𝜃 2⁄ + ∆𝜃
2⁄ )

𝑒2𝑠𝑖𝑛(𝜃 2⁄ + ∆𝜃
2⁄ ) 

𝑒3 𝑠𝑖𝑛(𝜃 2⁄ + ∆𝜃
2⁄ )]

 
 
 
 
 

=   

[
 
 
 
 
 𝑐𝑜𝑠 (𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃

2⁄ ) − sin  (𝜃 2⁄ )𝑠𝑖𝑛 (∆𝜃
2⁄ )

𝑒1 (sin  (𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃
2⁄ ) + sin (∆𝜃

2⁄ )𝑐𝑜𝑠 (𝜃 2⁄ ))

𝑒2 (sin  (𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃
2⁄ ) + sin (∆𝜃

2⁄ )𝑐𝑜𝑠 (𝜃 2⁄ ))

𝑒3 (sin  (𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃
2⁄ ) + sin (∆𝜃

2⁄ )𝑐𝑜𝑠 (𝜃 2⁄ ))]
 
 
 
 
 

 (3.8) 

 

Introducing (𝑒1
2 + 𝑒2

2 + 𝑒3
2) in the first row and  𝑒2𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ ) −

𝑒2𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃
2⁄ ), 𝑒1𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ ) − 𝑒1𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃
2⁄ ) and 𝑒1𝑒2 sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ ) −

𝑒1𝑒2 sin(𝜃 2⁄ ) sin(∆𝜃
2⁄ ) in the second, third and fourth rows respectively, 

 

𝑞(𝑡 + ∆𝑡) =

[
 
 
 
 
 𝑐𝑜𝑠 (𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃

2⁄ ) − (𝑒1
2 + 𝑒2

2 + 𝑒3
2)sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ )

𝑒1 sin(𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃
2⁄ ) + 𝑒1sin (∆𝜃

2⁄ )𝑐𝑜𝑠(𝜃 2⁄ ) + 𝑒2𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃
2⁄ ) − 𝑒2𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ )

𝑒2 sin(𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃
2⁄ ) + 𝑒2sin (∆𝜃

2⁄ )𝑐𝑜𝑠(𝜃 2⁄ ) + 𝑒1𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃
2⁄ ) − 𝑒1𝑒3 sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ )

𝑒3 sin(𝜃 2⁄ )𝑐𝑜𝑠(∆𝜃
2⁄ ) + 𝑒3 sin(∆𝜃

2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ ) + 𝑒1𝑒2 sin(𝜃 2⁄ ) sin(∆𝜃
2⁄ ) − 𝑒1𝑒2 sin(𝜃 2⁄ ) sin(∆𝜃

2⁄ )]
 
 
 
 
 

 (3.9) 

 

 

𝑞(𝑡 + ∆𝑡) =

[
 
 
 
 
 𝑐𝑜𝑠(∆𝜃

2⁄ ) −𝑒1 sin(∆𝜃
2⁄ ) −𝑒2 sin(∆𝜃

2⁄ ) −𝑒3 sin(∆𝜃
2⁄ )

𝑒1sin (∆𝜃
2⁄ ) 𝑐𝑜𝑠(∆𝜃

2⁄ ) 𝑒3 sin(∆𝜃
2⁄ ) −𝑒2 sin(∆𝜃

2⁄ )

𝑒2 sin(∆𝜃
2⁄ ) −𝑒3 sin(∆𝜃

2⁄ ) 𝑐𝑜𝑠(∆𝜃
2⁄ ) 𝑒1 sin(∆𝜃

2⁄ )

𝑒3 sin(∆𝜃
2⁄ ) 𝑒2 sin(∆𝜃

2⁄ ) −𝑒1 sin(∆𝜃
2⁄ ) 𝑐𝑜𝑠(∆𝜃

2⁄ ) ]
 
 
 
 
 

[
 
 
 
 
 
 
 𝑐𝑜𝑠 𝜃

2
⁄

𝑒1𝑠𝑖𝑛𝜃
2

⁄

𝑒2𝑠𝑖𝑛𝜃
2

⁄  

𝑒3 𝑠𝑖𝑛𝜃
2

⁄
]
 
 
 
 
 
 
 

 (3.10) 

 

Using small-angle approximation, sin(∆𝜃
2⁄ ) ≈ ∆𝜃

2⁄ ≈  1 2⁄ 𝑤∆𝑡 𝑎𝑛𝑑 𝑐𝑜𝑠(∆𝜃
2⁄ ) ≈ 1   

 𝑞(𝑡 + ∆𝑡) =

[
 
 
 
 
 1 −1

2⁄ 𝑤𝑥∆𝑡 −1
2⁄ 𝑤𝑦∆𝑡 −1

2⁄ 𝑤𝑧∆𝑡

1
2⁄ 𝑤𝑥∆𝑡 1 1

2⁄ 𝑤𝑧∆𝑡 −1
2⁄ 𝑤𝑦∆𝑡

1
2⁄ 𝑤𝑦∆𝑡 −1

2⁄ 𝑤𝑧∆𝑡 1 1
2⁄ 𝑤𝑥∆𝑡

1
2⁄ 𝑤𝑧∆𝑡 1

2⁄ 𝑤𝑦∆𝑡 −1
2⁄ 𝑤𝑥∆𝑡 1 ]

 
 
 
 
 

[
 
 
 
 
 
 
 𝑐𝑜𝑠 𝜃

2
⁄

𝑒1𝑠𝑖𝑛𝜃
2

⁄

𝑒2𝑠𝑖𝑛𝜃
2

⁄  

𝑒3 𝑠𝑖𝑛𝜃
2

⁄
]
 
 
 
 
 
 
 

 (3.11) 

 

 �̇� = lim
𝑡→0

𝑞(𝑡 + ∆𝑡)  −  𝑞(𝑡)

∆𝑡
 (3.12) 
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 �̇� = lim
𝑡→0

(

 
 
 

[
 
 
 
 
 1 −1

2⁄ 𝑤𝑥∆𝑡 −1
2⁄ 𝑤𝑦∆𝑡 −1

2⁄ 𝑤𝑧∆𝑡

1
2⁄ 𝑤𝑥∆𝑡 1 1

2⁄ 𝑤𝑧∆𝑡 −1
2⁄ 𝑤𝑦∆𝑡

1
2⁄ 𝑤𝑦∆𝑡 −1

2⁄ 𝑤𝑧∆𝑡 1 1
2⁄ 𝑤𝑥∆𝑡

1
2⁄ 𝑤𝑧∆𝑡 1

2⁄ 𝑤𝑦∆𝑡 −1
2⁄ 𝑤𝑥∆𝑡 1 ]

 
 
 
 
 

[
 
 
 
 
 𝑐𝑜𝑠 𝜃 2⁄

𝑒1𝑠𝑖𝑛
𝜃

2⁄

𝑒2𝑠𝑖𝑛
𝜃

2⁄  

𝑒3 𝑠𝑖𝑛
𝜃

2⁄ ]
 
 
 
 
 

−

[
 
 
 
 
 𝑐𝑜𝑠 𝜃 2⁄

𝑒1𝑠𝑖𝑛
𝜃

2⁄

𝑒2𝑠𝑖𝑛
𝜃

2⁄  

𝑒3 𝑠𝑖𝑛
𝜃

2⁄ ]
 
 
 
 
 

)

 
 
 1

∆𝑡
 (3.13) 

 

 

�̇� = lim
𝑡→0

(

 
 

[
 
 
 
 

1 − 1
2⁄ 𝑤𝑥∆𝑡 − 1

2⁄ 𝑤𝑦∆𝑡 − 1
2⁄ 𝑤𝑧∆𝑡

1
2⁄ 𝑤𝑥∆𝑡 1 1

2⁄ 𝑤𝑧∆𝑡 − 1
2⁄ 𝑤𝑦∆𝑡

1
2⁄ 𝑤𝑦∆𝑡 − 1

2⁄ 𝑤𝑧∆𝑡 1 1
2⁄ 𝑤𝑥∆𝑡

1
2⁄ 𝑤𝑧∆𝑡 1

2⁄ 𝑤𝑦∆𝑡 − 1
2⁄ 𝑤𝑥∆𝑡 1 ]

 
 
 
 

− [
1 0 0

0 1 0

0 0 1

] 

)

 
 

[
 
 
 
 
 𝑐𝑜𝑠 𝜃 2⁄

𝑒1𝑠𝑖𝑛
𝜃

2⁄

𝑒2𝑠𝑖𝑛
𝜃

2⁄  

𝑒3 𝑠𝑖𝑛
𝜃

2⁄ ]
 
 
 
 
 

1

∆𝑡
 (3.14) 

 

 

�̇� =
1

2

[
 
 
 
 
0 −𝑤𝑥 −𝑤𝑦 −𝑤𝑧

𝑤𝑥 0 𝑤𝑧 −𝑤𝑦

𝑤𝑦 −𝑤𝑧 0 𝑤𝑥

𝑤𝑧 𝑤𝑦 −𝑤𝑥 0 ]
 
 
 
 

𝑞(𝑡) (3.15) 

The kinematics equation can be further rearranged to a more elegant form that relates angular 

velocity and quaternions rates. 

 
[

�̇�0

�̇�1

�̇�2

�̇�3

] =
1

2
[

𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0

] [

0
𝑤𝑥

𝑤𝑦

𝑤𝑧

] 

 

(3.16) 

The transformation matrix between angular velocity ‘w’ and quaternion rates is a non-singular and 

orthogonal matrix. 

 
[

0
𝑤𝑥

𝑤𝑦

𝑤𝑧

] = 2 [

𝑞0 𝑞1 𝑞2 𝑞3

−𝑞1 𝑞0 𝑞3 −𝑞2

−𝑞2 −𝑞3 𝑞0 𝑞1

−𝑞3 𝑞2 −𝑞1 𝑞0

] [

�̇�0

�̇�1

�̇�2

�̇�3

] 

 

(3.17) 

The quaternion rate vectors �̇� = (�̇�1, �̇�2, �̇�3) and the angular velocity can be related using the above 

kinematics equation as shown below. 

 𝑤 = 2(𝑞0�̇� − �̇�0𝑞) − 2[𝑞 ×]�̇�𝑏
0 (3.18) 
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 Where:   [𝑞 ×] = [

0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
]  

 

3.4 Disturbance Torques in Low Earth Orbit Space Environment 

The disturbance on the system depends on the system environment. The space environment 

consists of different disturbances. These disturbances can also be used for the actuator, as an 

example, magnet-torquer uses the earth’s magnetic field. For satellites in the vicinity of the Earth, 

the major disturbance torques are, magnetic-torque, solar radiation pressure torque, aerodynamic 

torque, and gravity-gradient torque.     

The torque due to the magnetic field is neglected since there is no magnetic coil used as an actuator 

that will interact with the earth’s magnetic field. In addition, the residual magnetic dipole moment 

produced by the onboard electronics is too low to produce torque by interacting with Earth’s 

magnetic field. The torques due to solar pressure and drag are also neglected since center action 

of the resultant solar pressure force and the resultant drag force are the geometrical centers of the 

six faces of the CubeSat. The geometrical center is considered as the center of mass of the CubeSat; 

therefore, the distance between either solar pressure force or drag force action point normal, and 

the principal axis of rotation is zero. This makes the torques due to the solar pressure and drag is 

zero.     

Moreover, this thesis considers gravity gradient torque as a disturbance torque that affects the 

CubeSat. The gravitational force is varying with the distance from the center of the Earth. It 

decreases as a distance increases from the center of the earth. Torque will be induced due to this 

gravity-gradient. 
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Figure 3.1 The Effect of Gravity Gradient Torque 

Considering the above figure, two mass connected by the massless rigid rod as a system, there is 

unequal gravitational force acted on the m1 and m2 by M. The torque will be developed on the 

system due to this unbalanced force. 

 

Figure 3.2 Position Vector Representation between Two Bodies 

By considering the continuous rigid body, gravity-gradient torque can be modeled. This model is 

developed using the reference [44]. The gravitational force on the infinitesimal mass element dm 

positioned at �⃗� from the satellite center of mass is     

 
𝑑�⃗�𝑔 = −

𝜇(𝑟 + �⃗�)

|𝑟 + �⃗�|3
𝑑𝑚 (3.19) 
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Where, 𝑟 is the orbital position of the satellite center of mass, 𝜇 is universal gravitational constant. 

It is assumed that ρ ≪ 𝑟 = 𝑟. By applying, first-order Taylor series expansion approximation, 

 |𝑟 + �⃗�|−3 ≈
1

𝑟3
(1 −

3𝑟. �⃗�

𝑟2
) (3.20) 

 

Where, 𝑟 = |𝑟|. Expanding the gravitation force expression by substituting the above equation, the 

gravitational force acting on the mass element dm will be    

 
𝑑�⃗�𝑔 = −

𝜇(𝑟 + �⃗�)

𝑟3
(1 −

3𝑟. �⃗�

𝑟2
)𝑑𝑚 (3.21) 

The total torque on the center of mass is 

 
�⃗⃗�𝑔 = ∫ �⃗� × 𝑑�⃗�𝑔 = ∫ �⃗� ×(−

𝜇(𝑟 + �⃗�)

𝑟3
)𝑑𝑚 + ∫ �⃗� × (

3𝜇(𝑟. �⃗�)

𝑟5
(𝑟 + �⃗�)) 𝑑𝑚 (3.22) 

 

The integral over the entire satellite body, ∫ �⃗�𝑑𝑚 = 0 since the center of mass is at the origin. By 

taking ∫ �⃗� × �⃗� = 0 and ∫ �⃗�𝑑𝑚 = 0, the total torque is simplified:   

 
�⃗⃗�𝑔 =

3𝜇

𝑟5
∫ �⃗� × 𝑟(𝑟. �⃗�)𝑑𝑚 (3.23) 

 

The torque, orbital position vector, and position vector of infinitesimal mass element dm from the 

satellite center of mass are expressed in the body reference frame (b1, b2, b3).  

 �⃗⃗�𝑔 = 𝑇𝑔𝑏1�⃗⃗�1 + 𝑇𝑔𝑏2�⃗⃗�2 + 𝑇𝑔𝑏3�⃗⃗�3 

𝑟 == 𝑟𝑏1�⃗⃗�1 + 𝑟𝑏2�⃗⃗�2 + 𝑟𝑏3�⃗⃗�3 

�⃗� = 𝜌𝑏1�⃗⃗�1 + 𝑝𝑏2�⃗⃗�2 + 𝜌𝑏3�⃗⃗�3 

(3.24) 

 

The cross product �⃗� × 𝑟 can be expanded as 

 

�⃗� = [𝜌𝑏1 𝑝𝑏2 𝜌𝑏3] [

𝑏1

𝑏2

𝑏3

]  𝑎𝑛𝑑 𝑟 = [𝑟𝑏1 𝑟𝑏2 𝑟𝑏3] [

𝑏1

𝑏2

𝑏3

] (3.25) 

 

 

�⃗� × 𝑟 = [𝜌𝑏1 𝑝𝑏2 𝜌𝑏3] [

𝑏1

𝑏2

𝑏3

] × [𝑏1 𝑏2 𝑏3] [

𝑟𝑏1

𝑟𝑏2

𝑟𝑏3

] (3.26) 
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 �⃗� × 𝑟 = [𝜌𝑏1 𝑝𝑏2 𝜌𝑏3] [

𝑏1 × 𝑏1 𝑏1 × 𝑏2 𝑏1 × 𝑏3

𝑏2 × 𝑏1 𝑏2 × 𝑏2 𝑏2 × 𝑏3

𝑏3 × 𝑏1 𝑏3 × 𝑏2 𝑏3 × 𝑏3

] [

𝑟𝑏1

𝑟𝑏2

𝑟𝑏3

] (3.27) 

 

             �⃗� × 𝑟 = [𝜌𝑏1 𝑝𝑏2 𝜌𝑏3] [

0 𝑏3 −𝑏2

−𝑏3 0 𝑏1

𝑏2 −𝑏1 0
] [

𝑟𝑏1

𝑟𝑏2

𝑟𝑏3

] (3.28) 

 

 

�⃗� × 𝑟 = −[𝑏1 𝑏2 𝑏3] [

0 𝜌𝑏3 −𝑝𝑏2

−𝜌𝑏3 0 𝜌𝑏1

𝑝𝑏2 −𝜌𝑏1 0
] [

𝑟𝑏1

𝑟𝑏2

𝑟𝑏3

] , 𝜌× = [

0 𝜌𝑏3 −𝑝𝑏2

−𝜌𝑏3 0 𝜌𝑏1

𝑝𝑏2 −𝜌𝑏1 0
] (3.29) 

 

Defining with respect to the body frame, 

 �⃗� × 𝑟 = 𝜌× 𝑟 = −𝑟×𝜌,   (3.30) 

And the dot product defined as 

 (𝑟. �⃗�) = 𝜌𝑇𝑟 (3.31) 

 

Substituting dot and cross products in the gravity gradient torque equations   

 
�⃗⃗�𝑔 =

3𝜇

𝑟5
∫−𝑟×𝜌𝜌𝑇𝑟𝑑𝑚 = −

3𝜇

𝑟5
𝑟× ∫𝜌𝜌𝑇𝑑𝑚𝑟 (3.32) 

 

From the identity of dot and cross product,  

 𝜌 × (𝜌 × 𝑟) = 𝜌×(𝜌× 𝑟) = (𝜌𝑇𝑟)𝜌 − (𝜌𝑇𝜌)𝑟 

𝜌×(𝜌× 𝑟) = (𝜌𝜌𝑇 − (𝜌𝑇𝜌)𝐼)𝑟 

𝜌×𝜌× = 𝜌𝜌𝑇 − (𝜌𝑇𝜌)𝐼 

𝜌𝜌𝑇 = 𝜌×𝜌× + (𝜌𝑇𝜌)𝐼 

(3.33) 

 

Where “I” is the identity matrix. Substituting the above relation in the final simplified gravity 

gradient torque will give 

 
�⃗⃗�𝑔 = −

3𝜇

𝑟5
𝑟× ∫𝜌×𝜌×𝑟𝑑𝑚 −

3𝜇

𝑟5
𝑟× ∫(𝜌𝑇𝜌)𝐼𝑑𝑚𝑟 (3.34) 

 

Note that 𝜌𝑇𝜌 is a scaler quantity and 𝑟×𝜌𝑇𝜌𝑟 = 𝜌𝑇𝜌𝑟×𝑟 = 0,  the above equation further 

simplified as 
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�⃗⃗�𝑔 =

3𝜇

𝑟5
𝑟× ∫(−𝜌×𝜌×)𝑑𝑚𝑟 (3.35) 

 

Form the definition the moment of inertia matrix, ‘I’ is given as 

 
𝐼 = ∫(−𝜌×𝜌×)𝑑𝑚 (3.36) 

 

Therefore, the gravity-gradient torque is   

 
�⃗⃗�𝑔 =

3𝜇

𝑟5
𝑟×𝐼𝑟 (3.37) 

 

3.5 Attitude Dynamics 

The dynamics of the CubeSat is modeled as a rigid body dynamic exposed to external disturbance 

forces. The attitude dynamics of the CubeSat is modeled using reference [2, 3, 44, 45]. 

 

Figure 3.3 Position Vector Representation with respect to Inertial Frame of Reference 
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 𝑅𝐼 = 𝑅𝑂 + 𝑟𝑖 (3.38) 

 

 𝑅𝐼
̇ = 𝑅�̇� + 𝑟�̇� + 𝜔 × 𝑟𝑖 = 𝑉𝑜 + 𝑉𝑖 +  𝜔 × 𝑟𝑖 (3.39) 

Since the CubeSat is considered to be a rigid body, the distance between the particles is constant. 

Angular momentum of a particle in the system will be  

 𝑟�̇� = 𝑉𝑖 = 0 (3.40) 

 

 ℎ𝑖 = −𝑉𝑜 × 𝑚𝑖𝑟𝑖 + 𝑟𝑖 × 𝑚𝑖(𝜔 × 𝑟𝑖) (3.41) 

   

The total angular momentum is 

 ℎ = ∑−𝑣𝑜

𝑚𝑖

× 𝑚𝑖𝑟𝑖 + ∑𝑟𝑖 × (𝜔 × 𝑟𝑖)

𝑚𝑖

𝑚𝑖 (3.42) 

The sum of all mass moments of the particles of the CubeSat about the mass center of the CubeSat 

is zero. The total angular momentum will be simplified as follows: 

 ℎ = ∑𝑟𝑖 × (𝜔 × 𝑟𝑖)

𝑚𝑖

𝑚𝑖 (3.43) 

 𝜔 = [𝜔𝑥 𝜔𝑦 𝜔𝑧] , 𝑟𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖] (3.44) 

Substituting the r and ω in terms of vector expression, 

 ℎ = 𝑖 [𝜔𝑥 ∑(𝑦𝑖
2 + 𝑧𝑖

2)𝑚𝑖 − 𝜔𝑦 ∑𝑦𝑖𝑥𝑖𝑚𝑖 − 𝜔𝑧 ∑𝑥𝑖𝑧𝑖𝑚𝑖]

+ 𝑗 [𝜔𝑦 ∑(𝑥𝑖
2 + 𝑧𝑖

2)𝑚𝑖 − 𝜔𝑥 ∑𝑦𝑖𝑧𝑖𝑚𝑖 − 𝜔𝑧 ∑𝑦𝑖𝑧𝑖𝑚𝑖]

+ 𝑘 [𝑤𝑧 ∑(𝑥𝑖
2 + 𝑦𝑖

2)𝑚𝑖 − 𝜔𝑥 ∑𝑥𝑖𝑧𝑖𝑚𝑖 − 𝜔𝑦 ∑𝑦𝑖𝑧𝑖𝑚𝑖] 

(3.45) 

 

 𝐼𝑥𝑥 = ∑(𝑦𝑖
2 + 𝑧𝑖

2)𝑚𝑖 ,

𝑚𝑖

  𝐼𝑦𝑦 = ∑(𝑥𝑖
2 + 𝑧𝑖

2)𝑚𝑖 ,   

𝑚𝑖

𝐼𝑧𝑧 = ∑(𝑥𝑖
2 + 𝑦𝑖

2)𝑚𝑖 ,   

𝑚𝑖

 (3.46) 
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 𝐼𝑦𝑧 = 𝐼𝑧𝑦 = ∑(𝑦𝑖𝑧𝑖)𝑚𝑖 ,   

𝑚𝑖

𝐼𝑧𝑥 = 𝐼𝑥𝑧 = ∑(𝑥𝑖𝑧𝑖)𝑚𝑖 , 𝐼𝑥𝑦 = 𝐼𝑦𝑥 = ∑(𝑦𝑖𝑥𝑖)𝑚𝑖 ,   

𝑚𝑖𝑚𝑖

 (3.47) 

 

 

ℎ = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] [

𝜔𝑥

𝜔𝑦

𝑤𝑧

] = [𝐼]𝜔 , (3.48) 

 

The new orientation of a CubeSat is due to the rotation of the CubeSat about the CubeSat reference 

frame. This reference frame is assumed to be aligned with the principal axis of the CubeSat; so 

that the CubeSat center of mass is the same as its center gravity. The moment of inertial will be 

the principal moment of inertia. The product of inertial becomes zero.   

 

[𝐼] = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (3.49) 

 

Euler’s law states that the total moment acting on a body about its center of mass equals the time 

rate of change of its total angular momentum. 

 𝐻 = ℎ𝑖 + ℎ = ℎ𝑖 + [𝐼]𝜔 (3.50) 

 

 

�̇� = 𝑇 − 𝜔 × 𝐻 = 𝑇 − 𝜔 × (ℎ𝑖 + ℎ) = 𝑇 − 𝜔 × (ℎ𝑖 + [𝐼]𝜔) 
(3.51) 

 �̇� = ℎ̇𝑖 + [𝐼]̇ 𝜔 + �̇�[𝐼] = 𝑇 − 𝜔 × (ℎ𝑖 + [𝐼]𝜔)  (3.52) 

 

 �̇�[𝐼] =  𝑇 − ℎ̇𝑖 − [𝐼]̇ 𝜔 − 𝜔 × ℎ𝑙 − 𝑤 × [𝐼]𝜔 (3.53) 

 

Where:  

T 

External torque/Disturbance torques (like torques due to magnetic dipole 

moment, gravity gradient, aerodynamic drag, solar radiation pressure). 

These torques can be used for actuating purposes if not they are considered 
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as a disturbance in control design. Magnetorquers are used as an external 

actuator in CubeSat using the disturbance from Earth’s magnetic field.    

 

ℎ�̇� 

Internal torques due to onboard changes by rotating or displacing objects 

which can alter the spacecraft or satellite rotational velocity. These internal 

torques can be actuators like control moment gyros, reaction wheels, and 

momentum wheels or any disturbance torques in the satellite like liquid 

slosh or moving components. The reaction wheels are used as an internal 

actuator for CubeSat. 

 

[𝐼]̇ 𝜔 

Represents the change in moments of inertia of the satellite and spacecraft 

due to solar panel articulations, fuel usage, and onboard fluid slosh. 

 

𝜔 × ℎ𝑖 

Gyroscopic torques onboard rotating components (how angular momentum 

of internally moving components change direction) 

 

𝑤 × [𝐼]𝜔 
Gyroscopic torques on satellite (how angular momentum of the whole 

satellite body change direction) 

 

Since the structures of the CubeSat is thought to be rigid structure and there is no slosh or no solar 

panel articulation, the changes of moments of inertia are considered as zero.  

 [𝐼]̇ 𝜔 = 0 (3.54) 

The disturbance torque considered is the gravity gradient which is represented as Tg.  

 𝑇 = 𝑇𝑔 (3.55) 

The internal torque considered is the reaction wheel symbolized as hw.   

 ℎ�̇� = ℎ𝑤 = 𝐶ℎ𝑤𝑤 (3.56) 

The angular momentum of the reaction wheel about the reaction wheel axis is designated as hww 

while the angular momentum of the reaction wheel about the CubeSat body-fixed body frame axis 

is designated as hw. C is three rows and ‘n’ number of the columns of the transformation matrix of 
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reaction wheel’s angular momentum vector between CubeSat body-fixed body frame and the 

reaction wheel axis frame. Where ‘n’ is the number of reaction wheels in the given satellite under 

consideration. For this thesis, three reaction wheels that their rotation axis are along the CubeSat 

body-fixed body frame axis are used. Thus, the transformation matrix C is three by three identity 

matrix.  

 
ℎ𝑤 = 𝐶ℎ𝑤𝑤, 𝐶 = [

1 0 0
0 1 0
0 0 1

] 

ℎ�̇� = ℎ𝑤 = ℎ𝑤𝑤 

(3.57) 

 

Angular velocity of the satellite, 𝜔 is considered to be the angular velocity of body-fixed body 

frame with respect to the geocentric inertial frame 𝜔𝑏
𝑖  because the body-fixed body frame is 

attached to the satellite body.   

𝜔𝑏
𝑖 = 𝜔 

Thus, the final dynamics equation will be   

 𝜔𝑏
𝑖 = 𝐼−1[𝑇𝑔 − ℎ̇𝑤 − 𝜔𝑏

𝑖 × ℎ𝑤 − 𝜔𝑏
𝑖 × [𝐼]𝜔𝑏

𝑖 ] (3.58) 

Where, 

𝑇𝑔 Gravity gradient torque 

ℎ̇𝑤 Main reaction torque (i.e. reaction wheel angular momentum rate) 

𝜔 × ℎ𝑤 Gyroscopic torque effect on reaction wheel 

𝜔 × [𝐼]𝜔 Gyroscopic torque effect on satellite 

3.6 State Space Representation of Attitude Kinematics and Dynamics  

The state-space model of the system is based on the linearization of the perturbation of the 

kinematic and dynamics of attitude at the equilibrium points of the states. The vector parts of the 

quaternion and their rates are considered as states. These states are 𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3.  

The equilibrium point is taken by considering every axis of body-fixed body reference frame 

perfectly parallel to the corresponding axis of the body-centered orbital frames; therefore, the third 

axis of both frames of references are pointing to the earth center. Satellites that can achieve this 
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pointing usually named as nadir pointing satellites. The rotation matrix of the body-fixed body 

frame of nadir pointing satellites as seen from the body-centered orbital frame is the identity 

matrix. This infers the equilibrium point is  

 

[
 
 
 
 
 
 
𝑞0

𝑞1

𝑞2
𝑞3

�̇�1

�̇�2

�̇�3]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1
0
0
0
0
0
0]
 
 
 
 
 
 

 (3.59) 

The rotation matrix between the body-centered orbital frame and body-fixed body frame applies 

the quaternion rotation matrix and it will be linearized with the consideration of neglecting second-

order perturbations which are multiplications between quaternion vectors and using equilibrium 

points [3]. 

𝐶(𝑞) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

Thus, 

𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞1𝑞2 = 𝑞1𝑞3 = 𝑞2𝑞3 ≈ 0, 

𝑞0
2 ≈ 1, 

𝑞0𝑞1 ≈ 𝑞1, 𝑞0𝑞2 ≈ 𝑞2,     𝑎𝑛𝑑 𝑞0𝑞3 ≈ 𝑞3 

The linearized transformation matrix will be 

 

[

1 2𝑞3 −2𝑞2

−2𝑞3 1 2𝑞1

2𝑞2 −2𝑞1 1
] (3.60) 

Which can be expressed as 

 
�̂�1 = [

1
−2𝑞3

2𝑞2

] ,         �̂�2 = [
2𝑞3

1
−2𝑞1

],          �̂�3 = [
−2𝑞2

2𝑞1

1
] (3.61) 

Considering circular orbit, the orbital velocity seen from the body-centered orbital frame is  
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[

0
−𝜔𝑐

0
] (3.62) 

The angular rotation rate that body-centered orbital frame experience with respect to geocentric 

inertial frame as seen from body-fixed body frame will be 

 

𝜔𝑖
𝑜 =[

1 2𝑞3 −2𝑞2

−2𝑞3 1 2𝑞1

2𝑞2 −2𝑞1 1
] [

0
−𝜔𝑐

0
] (3.63) 

 

 
𝜔𝑖

𝑜 =    [
−2𝜔𝑐𝑞3

−𝜔𝑐

2𝜔𝑐𝑞1

] (3.64) 

From the kinematics of the quaternion that relates body-fixed body frame to body-centered orbital 

frame is given as [3]. 

 𝜔𝑜
𝑏 = 2(𝑞0�̇� − �̇�0𝑞) − 2[𝑞 ×]�̇� (3.65) 

Where, [𝑞 ×] is a quaternion vector tilde operator. 

 
[𝑞 ×] = [

0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
] (3.66) 

Considering small quaternion approximation, 𝑞0 ≈ 1 and �̇�0 ≈ 0. Therefore, 

 𝜔𝑜
𝑏 = 2�̇� (3.67) 

The angular velocity and angular acceleration of CubeSat can be expressed using quaternion as 

follows  

 

𝜔𝑖
𝑏  = 𝜔𝑜

𝑏 + 𝜔𝑖
𝑜 = 2�̇� + [

−2𝜔𝑐𝑞3

−𝜔𝑐

2𝜔𝑐𝑞1

] = [

2�̇�1−2𝜔𝑐𝑞3

2�̇�2−𝜔𝑐

2�̇�3 + 2𝜔𝑐𝑞1

] (3.68) 

 

 

�̇�𝑖
𝑏  = [

2�̈�1−2𝜔𝑐�̇�3

2�̈�2

2�̈�3 + 2𝜔𝑐�̇�1

] (3.69) 
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Where, 

𝜔𝑖
𝑏 - angular velocity of body-fixed body frame with respect to the geocentric inertial 

frame 

𝜔𝑜
𝑏 - angular velocity of body-fixed body frame with respect to the body-centered orbital 

frame 

𝜔𝑖
𝑜 - angular velocity of the body-centered orbital frame with respect to the geocentric 

inertial frame 

Now, attitude dynamics can be linearized by linearizing every mathematical term of the dynamics 

of the CubeSat attitude from equation 3.58. 

𝜔𝑏
𝑖 = 𝐼−1[𝑇𝑔 − ℎ̇𝑤 − 𝜔𝑏

𝑖 × ℎ𝑤 − 𝜔𝑏
𝑖 × [𝐼]𝜔𝑏

𝑖 ] 

Redefining a control torque as  

𝑇𝑐 = ℎ̇𝑤 − 𝜔𝑏
𝑖 × ℎ𝑤 

The attitude dynamics will become 

𝜔𝑏
𝑖 = 𝐼−1[𝑇𝑔 − 𝑇𝑐 − 𝜔𝑏

𝑖 × [𝐼]𝜔𝑏
𝑖 ] 

The linearization will be as follows: 

• Linearizing gravity gradient torque per mass inertia: 

Gravity gradient torque from equation (3.37)  

 
�⃗⃗�𝑔 =

3𝜇

𝑟5
𝑟×𝐼𝑟 (3.70) 

Vector “r” is located along the z-axis of the body-centered orbital frame as it is seen from 

the body-fixed body frame. Thus, the vector, r can be expressed using linearized 

transformation matrix expression between the body-centered orbital frame and the body-

fixed body frame as follows  

 

[

1 2𝑞3 −2𝑞2

−2𝑞3 1 2𝑞1

2𝑞2 −2𝑞1 1
] [

0
0
𝑟
] = 𝑟 [

−2𝑞2

2𝑞1

1
] = 𝑟�̂�3 

 

Gravity gradient torque is further simplified using equation (3.61) as  
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�⃗⃗�𝑔 =
3𝜇

𝑟5
𝑟2�̂�3

×
𝐼�̂�3 =

3𝜇

𝑟3
�̂�3

×
𝐼�̂�3 

 

Considering circular orbit, the radius vector is constant as seen from the body-centered 

orbital frame. The orbital velocity is given as 

 
𝜔𝑐 = √

𝜇

𝑟3
 (3.71) 

 

Therefore,  

 �⃗⃗�𝑔 = 𝜔𝑐
2[�̂�3 ×][𝐼]�̂�3 (3.72) 

 

 

�̂�3
×

= [�̂�3 ×] = [

0 −1 2𝑞1

1 0 2𝑞2

−2𝑞1 −2𝑞2 0
] (3.73) 

 

Using an approximation of quaternions, 

 𝑞1𝑞2 ≈ 0  

 

gravity gradient torque per mass inertia will be 

 

𝐼−1�⃗⃗�𝑔 = 3𝜔𝑐
2

[
 
 
 
 
 2𝑞1

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)

𝐼𝑥𝑥

−2𝑞2

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)

𝐼𝑦𝑦

0 ]
 
 
 
 
 

 (3.74) 

• Linearizing the gyroscopic torques on satellite per mass inertia 

 

−𝐼−1 (𝜔𝑏
𝑖 × [𝐼]𝜔𝑏

𝑖 )=−𝐼−1 ([

𝜔𝑖1
𝑏

𝜔𝑖2
𝑏

𝜔𝑖3
𝑏

] × [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] [

𝜔𝑖1
𝑏

𝜔𝑖2
𝑏

𝜔𝑖3
𝑏

]) (3.75) 

Substituting angular velocity of body-fixed body frame with respect to the geocentric 

inertial frame (equation (3.68))  

𝜔𝑖
𝑏 = [

𝜔𝑖1
𝑏

𝜔𝑖2
𝑏

𝜔𝑖3
𝑏

]  = [

2�̇�1 − 2𝜔𝑐𝑞3

2�̇�2 − 𝜔𝑐

2�̇�3 + 2𝜔𝑐𝑞1

] 
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in the cross-coupling components of total torque (gyroscopic torques on satellite) and using 

the approximation of quaternions, 

 �̇�2𝑞3 = �̇�2�̇�1 = �̇�2�̇�3 = �̇�2𝑞1 = �̇�3�̇�1 = �̇�3𝑞3 = 𝑞1�̇�1 = 𝑞1𝑞3 ≈ 0  

 

 

−𝐼−1 (𝜔𝑏
𝑖 × [𝐼]𝜔𝑏

𝑖 ) = −

[
 
 
 
 𝜔𝑖3

𝑏 𝜔𝑖2
𝑏 (𝐼𝑧𝑧−𝐼𝑦𝑦)

𝐼𝑥𝑥

𝜔𝑖3
𝑏 𝜔

𝑖1

𝑏 (𝐼𝑥𝑥−𝐼𝑧𝑧)

𝐼𝑦𝑦

𝜔𝑖1
𝑏 𝜔𝑖2

𝑏 (𝐼𝑦𝑦−𝐼𝑥𝑥)

𝐼𝑧𝑧 ]
 
 
 
 

= −

[
 
 
 
𝐼𝑧𝑧−𝐼𝑦𝑦

𝐼𝑥𝑥
(−2𝜔

𝑐
�̇�

3
− 2𝜔𝑐

2𝑞
1
)

0
𝐼𝑦𝑦−𝐼𝑥𝑥

𝐼𝑧𝑧
(−2𝜔𝑐�̇�1

+ 2𝜔𝑐
2𝑞

3
)]
 
 
 

 (3.76) 

 

• Linearizing Control Torque 

Neglecting the gyroscopic effect of reaction wheel in the control torque because it is very 

small for CubeSat compared to the CubeSat reaction wheel torque, so 𝜔 × ℎ𝑤 ≈ 0 [46]. 

ℎ̇𝑤 ≫ 𝜔𝑏
𝑖 × ℎ𝑤 

𝑇𝑐 = ℎ̇𝑤 − 𝜔𝑏
𝑖 × ℎ𝑤  

The control torque can be approximated as  

𝑇𝑐 ≈ ℎ̇𝑤   

• The Overall Linearization  

 𝜔𝑏
𝑖 = 3𝜔𝑐

2

[
 
 
 
 
 2𝑞1

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)

𝐼𝑥𝑥

−2𝑞2

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)

𝐼𝑦𝑦

0 ]
 
 
 
 
 

−

[
 
 
 
 
 
 
ℎ𝑤1

𝐼𝑥𝑥

ℎ𝑤1

𝐼𝑦𝑦

ℎ𝑤1

𝐼𝑧𝑧 ]
 
 
 
 
 
 

−

[
 
 
 
 
𝐼𝑧𝑧 − 𝐼𝑦𝑦

𝐼𝑥𝑥
(−2𝜔𝑐�̇�3 − 2𝜔𝑐

2𝑞1)

0
𝐼𝑦𝑦 − 𝐼𝑥𝑥

𝐼𝑧𝑧
(−2𝜔𝑐�̇�1 + 2𝜔𝑐

2𝑞3)]
 
 
 
 

 (3.77) 

 

The final linearization after introducing new mass inertia and control torques representation 

for simplification and angular acceleration of body-fixed body frame with respect to the 

geocentric inertial frame from equation (3.69) 

•  
𝐺1 =

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)

𝐼𝑥𝑥
, 𝐺2 =

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)

𝐼𝑦𝑦
 𝑎𝑛𝑑 𝐺3 =

𝐼𝑦𝑦 − 𝐼𝑥𝑥

𝐼𝑧𝑧
 (3.78) 

 

 ℎ̇𝑤1 = 𝑇𝑐1, ℎ̇𝑤2 = 𝑇𝑐2 𝑎𝑛𝑑 ℎ̇𝑤3 = 𝑇𝑐3  
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�̇�𝑖
𝑏  = [

2�̈�1−2𝜔𝑐�̇�3

2�̈�2

2�̈�3 + 2𝜔𝑐�̇�1

] (3.79) 

 

 

[

�̇�1

�̇�2

�̇�3

] = 3𝜔𝑐
2 [

𝑞1𝐺1

−𝑞2𝐺2

0
] −

[
 
 
 
 
 
 
𝑇𝑐1

2𝐼𝑥𝑥

𝑇𝑐2

2𝐼𝑦𝑦

𝑇𝑐3

2𝐼𝑧𝑧 ]
 
 
 
 
 
 

− [
𝐺1(−𝜔𝑐�̇�3 − 𝜔𝑐

2𝑞1)
0

𝐺3(−𝜔𝑐�̇�1 + 𝜔𝑐
2𝑞3)

] + [
𝜔𝑐�̇�3

0
−𝜔𝑐�̇�1

] (3.80) 

 

• State Space Model  

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝑐𝑥 + 𝐷𝑢 

𝑑
𝑑𝑡⁄

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

�̇�1

�̇�2

�̇�3]
 
 
 
 
 

 =  

[
 
 
 
 
 

0
0
0

4𝜔𝑐
2𝐺1

0
0

0
0
0
0

−3𝜔𝑐
2𝐺2

0

0
0
0
0
0

−𝜔𝑐
2𝐺3

1
0
0
0
0

−𝜔𝑐+𝜔𝑐𝐺3

0
1
0
0
0
0

0
0
1

𝜔𝑐+𝜔𝑐𝐺1

0
0 ]

 
 
 
 
 

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

�̇�1

�̇�2

�̇�3]
 
 
 
 
 

+       

[
 
 
 
 
 

0
0
0

−1
2𝐼𝑥𝑥

⁄

0
0

0
0
0
0

−1
2𝐼𝑦𝑦

⁄

0

0
0
0
0
0

−1
2𝐼𝑧𝑧

⁄ ]
 
 
 
 
 

[

𝑇𝑐1

𝑇𝑐2

𝑇𝑐3

] (3.81) 

 

 

[
 
 
 
 
 
𝑦1

𝑦2

𝑦3
𝑦4

𝑦5

𝑦6]
 
 
 
 
 

=

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

�̇�1

�̇�2

�̇�3]
 
 
 
 
 

 +  

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0]
 
 
 
 
 

[

𝑇𝑐1

𝑇𝑐2

𝑇𝑐3

] 

 

(3.82) 

Where, 

�̇� = 

[
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̈�1

�̈�2

�̈�3]
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𝑥 = 

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

�̇�1

�̇�2

�̇�3]
 
 
 
 
 

 

𝐴 = 

[
 
 
 
 
 

0
0
0

4𝜔𝑐
2𝐺1

0
0

0
0
0
0

−3𝜔𝑐
2𝐺2

0

0
0
0
0
0

−𝜔𝑐
2𝐺3

1
0
0
0
0

−𝜔𝑐+𝜔𝑐𝐺3

0
1
0
0
0
0

0
0
1

𝜔𝑐+𝜔𝑐𝐺1

0
0 ]

 
 
 
 
 

 

B =   

[
 
 
 
 
 

0
0
0

−1
2𝐼𝑥𝑥

⁄

0
0

0
0
0
0

−1
2𝐼𝑦𝑦

⁄

0

0
0
0
0
0

−1
2𝐼𝑧𝑧

⁄ ]
 
 
 
 
 

 

𝑦 = 

[
 
 
 
 
 
𝑦1

𝑦2

𝑦3
𝑦4

𝑦5

𝑦6]
 
 
 
 
 

 

𝐶= 

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 

 

 𝐷= 

[
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 

 

𝑢 = [

𝑇𝑐1

𝑇𝑐2

𝑇𝑐3

] 
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4 Overview of Fuzzy Logic, Neuro-Fuzzy and Genetic Algorithms  

This section tries to address the highlight of the fuzzy logic, genetic algorithm, and neuro-fuzzy 

system which is the synergy of the fuzzy logic and neural network.  

4.1 Fuzzy Logic 

The common binary logic works for exact and clear expressions and data. Vague expressions, non-

exact data classification, and intuitive decisions involved in engineering problems. Fuzzy logic 

and fuzzy sets can address this problem by applying modeling uncertain human reasoning and 

decision making [47]. The fuzzy system includes fuzzification, fuzzy rule base, fuzzy inference 

system, and defuzzification [48].  

4.1.1 Fuzzification 

Fuzzification is the way to transform crisp value to a fuzzy subset. The fuzzifications are specified 

by the membership functions of the fuzzy subsets. All crisp values are grouped into a single range 

and this range is the universe of discourse of the fuzzy set. Again, the fuzzy set is divided into 

fuzzy subsets. Each crisp value is the member of one or more fuzzy subsets with its corresponding 

level of membership value is in the interval of zero to one. 

The membership functions (MF) defines to what level the elements are members of the fuzzy set. 

The selection of MF is subjective to the designer’s requirement and the problem model. The 

generalized bell-shaped membership function is considered as a membership function in this thesis 

and it is parameterized by three parameters (a, b, c) [48]. Since it is sharp corners free and defined 

in three parameters, it gives more freedom to adjust it and ease differentiation steps in the learning 

method employed. The parameters a, b and c control width, slope, and the location of the center 

points of the generalized bell-shaped function, respectively.  

 
𝑏𝑒𝑙𝑙(𝑥; 𝑎, 𝑏, 𝑐) =

1

1 + (
𝑥−𝑐

𝑎
)
2𝑏 

(4.1) 
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4.1.2 Fuzzy Rule  

A rule base is a form of “If premise, then action”. The premise can be single or multiple antecedents 

that can be negated or related by logical operators.  These operators are defined as T-norm or S-

norm definitions [49]. In this thesis, the membership function (MF) of six states will be combined 

as the fuzzy rule pre-condition and the action at the consequent will be a linear function that takes 

a state as a variable.       

4.1.3 Fuzzy Inference System  

The fuzzy inference system will be used to logically infer the fuzzy rule base. Sugeno, Takagi, and 

Kang (TSK) fuzzy inference system is used as an inference system in this thesis. TSK has a form 

of 

 If x is A and y is B then Z = f(x, y) (4.2) 

Where, A and B are fuzzy sets in the antecedent while z=f (x, y) is a crisp function. The output of 

this model is a polynomial function parametrized with the antecedent inputs. The simplest output 

is a constant or a linear polynomial. The advantage of this model is it avoids the need for 

defuzzification and the rules can be generated from the data since the output involves parameters 

that can be modified from the learning experience.    

4.1.4 Defuzzification  

The outputs of most fuzzy inference systems are fuzzy output. These outputs have to be changed 

to crisp value to use them as a control signal. The fuzzy inference system used in this thesis is TSK 

that does not need any means of defuzzification. 

4.2 Neuro-Fuzzy  

The synergy of the neural network and fuzzy logic draws benefits from each method and tries to 

fill the gaps of one method by the other method. It combines the advantages of the fuzzy and 

artificial neural network (ANN) systems. The ANN has good adaptability through learning but 

with poor decision-making ability and fuzzy systems mimic human decision making but they 

cannot be able to cope with the changes in the system.  

The combination of the ANN and fuzzy systems will advance the problem-solving capabilities of 

the two systems compare to stand-alone [50]. There are different types of the synergy of the neuro-
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fuzzy system. One of the most common neuro-fuzzy systems is the adaptive neuro-fuzzy inference 

system (ANFIS) which is developed by Jang [51].        

4.2.1 Adaptive Neuro-Fuzzy Inference System Architecture  

The adaptive neuro-fuzzy inference system (ANFIS) is also known as the adaptive network-based 

fuzzy inference system (ANFIS). It is a network that functionally resembles the fuzzy inference 

system. ANFIS considered in this model represents the TSK model [51].  

 

Figure 4.1 ANFIS Architecture 

Assuming the TSK fuzzy model with a common rule set of two fuzzy rules, 

 
If x is A1 and y is B1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1. 

If x is A2 and y is B2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2. 
(4.3) 

 

The ANFIS structure is composed of five layers. Each layer has its functionality. The number of 

layers can be reduced by performing two or more-layer functions in a single layer. The five-layer 

ANFIS model is considered in this thesis. 

Layer 1: It is a combination of adaptive nodes. Each node is a fuzzy subset of a fuzzy set which 

is a membership function. From the figure above, A is a fuzzy set while A1 and A2 are 

the fuzzy subsets. Various membership functions can be used. The parameters of these 

functions are called premise parameters.      
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Layer 2: This layer is a fixed node labeled as II. The outputs of nodes are T-norm operation that 

performs fuzzy AND logic or intersection operation to the incoming signals. The outputs 

of each node represent the firing strength of a rule. The product of the incoming signals 

is one of the commonly used T-norm operations.  

 𝑤𝑖 = 𝜇𝐴𝑖
(𝑥)𝜇𝐵𝑖

(𝑥), 𝑖 = 1, 2 (4.4) 

Layer 3: The nodes in this layer are a fixed node labeled as N. Each node calculates the ratio of 

its firing strength to the sum of all rules’ firing strengths. Thus, the output is the 

normalized firing strength.  

 �̅�𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
, 𝑖 = 1, 2 (4.5) 

 

Layer 4: The node of this layer is an adaptive node with a node function. Considering linear TSK 

output, the node function is given by:  

 �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (4.6) 

 

Where, �̅�𝑖 is a normalized firing strength and the parameters (pi, qi, ri) in this layer are consequent 

parameters.   

Layer 5: This layer is a single fixed node labeled as Σ. The node executes the summation of all 

incoming singles.  

 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑�̅�𝑖𝑓𝑖 =
∑𝑤𝑖𝑓𝑖
∑𝑤𝑖

 (4.7) 

   

4.2.2 ANFIS Learning Rules 

ANFIS uses backpropagation and hybrid learning methods. The hybrid learning is a combination 

of backpropagation and least square methods.  In solely the backpropagation learning method, the 

premise, and the consequent parameters will be updated till optimal values are gained using the 

back-propagation learning algorithm. This is inefficient in terms of time. The hybrid learning 

method uses two learning methods combining the backpropagation learning algorithm and the least 

square estimator. The least-square method will be used to develop optimal consequent parameters 
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through sequential forward updates while the backpropagation will be used to develop optimal 

premise parameters through the sequential back passes. Hybrid learning is employed as the ANFIS 

learning rule in this thesis.     

A. Back Propagation Learning Algorithm  

The backpropagation learning algorithm is gradient-descent optimization that minimizes the 

network prediction or classification ability error using feed-back error propagation through the 

connected networks. It is a supervised learning algorithm.   

The backpropagation algorithm (BPA) is a commonly used learning rule in a multi-layer 

perceptron artificial neural network. It is based on the cost function called mean square error. This 

descriptive performance index cost function is 

 𝐽 = 1
2⁄ ∑(𝑟𝑗 − 𝑦𝑗)

2
𝑛

𝑗=1

 (4.8) 

 

Where, 𝑟𝑗 : desired network outputs 

𝑦𝑗 : the actual network outputs through activation     

  Functions 

Applying the gradient descent, the network's weight increment is proportional to the slope of the 

cost function which is called delta rule.  

 ∆𝑤𝑗𝑖 = −𝜍1

𝜕𝐽

𝜕𝑤𝑗𝑖
 (4.9) 

 

 
𝜕𝐽

𝜕𝑤𝑗𝑖
=

1

𝑛
∑

𝜕

𝜕𝑤𝑗𝑖

𝑛

𝑗=1

(𝑟𝑗 − 𝑦𝑗)
2
 (4.10) 

 

Where, 𝜍1 : constant proportional value 

 𝑤𝑗𝑖 : weight values between j-layer and ith neurons in multi-layer 

perceptron 

Expanding the above equation using the chain rule  
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𝜕𝐽

𝜕𝑤𝑗𝑖
=

2

𝑛
∑(𝑟𝑗 − 𝑦𝑗)

𝜕𝑦𝑗

𝜕𝑤𝑗𝑖

𝑛

𝑗=1

 

 

(4.11) 

The right side of the above equation can be expanded again using chain rule as 

 
𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝑦𝑖

𝜕𝑠𝑗

𝜕𝑠𝑗
𝜕𝑤𝑗𝑖

 

 

(4.12) 

For the matter of simple representation, the partial differentiation of activation function, y with 

respect to sj is symbolized as 

 
𝑦𝑖

′ =
𝜕𝑦𝑖

𝜕𝑠𝑗
 

 

(4.13) 

The partial differentiation of activation function, y with respect to wji 

 

𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
= 𝑦𝑖

′
𝜕𝑠𝑗
𝜕𝑤𝑗𝑖

 

 

(4.14) 

The activation functions, y has an input sj which is the summation of inputs to a given neuron 

 𝑠𝑗 = ∑(𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗)

𝑚

𝑗=1

 

 

(4.15) 

 𝑏𝑗 is a bias that can be considered as a wj0 weight with a unit input and sj redefined as 

 𝑠𝑗 = ∑𝑤𝑗𝑖𝑥𝑖

𝑚

𝑗=0

 

 

(4.16) 

The partial derivative of the summation of inputs at any neuron with respect to the weight is  

 

𝜕𝑠𝑗
𝜕𝑤𝑗𝑖

=
𝜕

𝜕𝑤𝑗𝑖
∑𝑤𝑗𝑖𝑥𝑖

𝑚

𝑗=0

= ∑
𝜕𝑤𝑗𝑖

𝜕𝑤𝑗𝑖

𝑚

𝑗=0

𝑥𝑖 = 𝑥𝑖 

 

(4.17) 

Thus, the partial differentiation of activation function, y with respect to wji 

 
𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
= 𝑦𝑖

′𝑥𝑖 

 

(4.18) 
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Combining the partial differentiation of activation function, y with respect to wji and the partial 

differentiation of cost function, J with respect to wji 

 
𝜕𝐽

𝜕𝑤𝑗𝑖
=

2

𝑛
∑(𝑟𝑗 − 𝑦𝑗)𝑦𝑖

′𝑥𝑖

𝑛

𝑗=1

 

 

(4.19) 

 𝜕𝐽

𝜕𝑤𝑗𝑖
=

2

𝑛
∑𝛿𝑗𝑥𝑖

𝑛

𝑗=1

 (4.20) 

 

Where, 𝛿𝑗 = (𝑟𝑗 − 𝑦𝑗)𝑦𝑖
′ 

Using the above expression, and the weight increment delta rule 

 
∆𝑤𝑗𝑖 = −𝜍1

𝜕𝐽

𝜕𝑤𝑗𝑖
= −

2𝜍1

𝑛
∑𝛿𝑗𝑥𝑖

𝑛

𝑗=1

 

 

(4.21) 

 
∆𝑤𝑗𝑖 = 𝜍 ∑𝛿𝑗𝑥𝑖

𝑛

𝑗=1

 (4.22) 

 

Where, 𝜍 = −
2𝜍1

𝑛
 is learning rate which is between 0 and 1 

The weight increment delta rule of each weight will be in discrete form as  

 ∆𝑤𝑗𝑖(𝑘𝑇) = 𝜍𝛿𝑗𝑥𝑖 

 
(4.23) 

The new updated weight will be 

 𝑤𝑗𝑖(𝑘𝑇) = 𝑤𝑗𝑖((𝑘 − 1)𝑇) + ∆𝑤𝑗𝑖(𝑘𝑇) 

𝑤𝑗𝑖(𝑘𝑇) = 𝑤𝑗𝑖((𝑘 − 1)𝑇) +  𝜍𝛿𝑗𝑥𝑖 
(4.24) 

 

The weight between the inner layers within the hidden layers will be the same and only the 𝛿𝑗 will 

be changed 

 [𝛿𝑗]𝑙 = [𝑦𝑖
′]𝑙 [∑∆𝑤𝑗𝑖𝛿𝑗

𝑚

1

]

𝑙+1

 

 

(4.25) 
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Thus, the 𝑙th layer jth neuron 𝛿𝑗 is the multiplication of the partial derivative of 𝑙th layer jth neuron 

activation function with respect to the summation of the input to jth neuron and multiplication of 

delta rule ∆𝑤𝑗𝑖 at (𝑙 + 1)th  layer and 𝛿𝑗 at (𝑙 + 1)th layer.   

B. Least Square Estimator 

The least-square method addresses the problem of developing a generalized predictive or classifier 

expressions by putting its basis on minimizing the mean square error between measured available 

data results and the results of the developed least square estimator expression.  

Assume a suggested model for raw input-output data 

 𝑦 = 𝑎1𝑔1(𝑥) + 𝑎2𝑔2(𝑥) + ⋯+ 𝑎𝑛𝑔𝑛(𝑥) (4.26) 

 

Where, 𝑎𝑖 , 𝑖 = 1,2,3⋯𝑛 : Regression Parameters 

 𝑔𝑖 , 𝑖 = 1,2,3⋯𝑛 : Known Functions of x 

𝑥 : Input Variables 

𝑦 : Output Variable 

Using known m numbers of input-output pairs 

 
{

𝑦1 = 𝑎1𝑔1(𝑥1) + 𝑎2𝑔2(𝑥1) + ⋯+ 𝑎𝑛𝑔𝑛(𝑥1)

𝑦2 = 𝑎1𝑔1(𝑥2) + 𝑎2𝑔2(𝑥2) + ⋯+ 𝑎𝑛𝑔𝑛(𝑥2)
⋮

𝑦𝑚 = 𝑎1𝑔1(𝑥𝑚) + 𝑎2𝑔2(𝑥𝑚) + ⋯+ 𝑎𝑛𝑔𝑛(𝑥𝑚)

 

 

(4.27) 

And, 

𝑔𝑖
𝑇 = [𝑔1(𝑥1) ⋯ 𝑎𝑛𝑔𝑛] 

Rewriting in a matrix  

 𝐺𝐴 = 𝑦 (4.28) 

 

Where,  

𝐺 = [
𝑔1(𝑥1) ⋯ 𝑔𝑛(𝑥1)

⋮ ⋮ ⋮
𝑔1(𝑥𝑚) ⋯ 𝑔𝑛(𝑥𝑚)

] 
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𝐴 = [

𝑎1

⋮
𝑎𝑛

] 

 
𝑦 = [

𝑦1

⋮
𝑦𝑛

] 

To find the unknown values of regression parameter values, simple analogical solution of the 

system of equations 𝑙𝑖𝑘𝑒 𝐴 = 𝐺−1𝑦 could not be taken as a solution since the matrix G is m x n  

matrix and not square matrix which implies G is not invertible. However, the least-square estimator 

with the goals of minimizing the error between the estimated value and output raw data will be 

helpful to find the optimal values of the regression parameter values.       

The error vector between the estimated value and output raw data, y 

 𝑦 − 𝐺𝐴 = 𝑒 (4.29) 

The sum of squared error 

 

𝐸(𝐴) = ∑(𝑦𝑖 − 𝑔𝑖
𝑇𝐴)2

𝑚

𝑖=1

= 𝑒𝑇𝑒 = (𝑦 − 𝐺𝐴)𝑇(𝑦 − 𝐺𝐴) 

= (𝑦𝑇 − 𝐴𝑇𝐺𝑇)(𝑦 − 𝐺𝐴) 

= 𝑦𝑇𝑦 − 𝑦𝑇𝐺𝐴 − 𝐴𝑇𝐺𝑇𝑦 + 𝐴𝑇𝐺𝑇𝐺𝐴 

= 𝑦𝑇𝑦 − 2𝑦𝑇𝐺𝐴 + 𝐴𝑇𝐺𝑇𝐺𝐴 

 

(4.30) 

Since 𝑦𝑇𝐺𝐴 and 𝐴𝑇𝐺𝑇𝑦 are scaler quantities and they are taken as equivalent 

−𝑦𝑇𝐺𝐴 − 𝐴𝑇𝐺𝑇𝑦 = −2𝑦𝑇𝐺𝐴 

Find the optimal value of regression parameter A, differentiate 𝐸(𝐴) with respect to A. 

𝐸(𝐴) = 𝑦𝑇𝑦 − 2𝑦𝑇𝐺𝐴 + 𝐴𝑇𝐺𝑇𝐺𝐴 

 

𝜕𝐸(𝐴)

𝜕𝐴
= 2𝐺𝑇𝐺𝐴 − 2𝐺𝑇𝑦 

 

(4.31) 

Equating 
𝜕𝐸(𝐴)

𝜕𝐴
 as zero  

 𝐴 = (𝐺𝑇𝐺)−1𝐺𝑇𝑦 (4.32) 
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The multiplication (𝐺𝑇𝐺) is considered to be non-singular. The optimal estimated generalized 

expression that fits the raw input-output data will be 

 𝐺𝐴 = 𝑦,  (4.33) 

4.3 Genetic Algorithms 

Genetic algorithms are a derivative-free evolutionary optimization process that candidate solution 

population from a given search space are first randomly selected to be evaluated in the fitness 

function and they evolve to optimal solution through biologically inspired genetical operators like 

mutation and cross over [52].    

The first initial population as a candidate solution is encoded as a binary, integer, or float gene and 

forms the chromosome solutions. These chromosomes are evaluated in the fitness function and 

scaled based on the values they scored in the fitness function. Genetic algorithm selection methods 

will select the fit candidate solutions using the scaling information. Fittest candidates will have a 

high scale and thus, it gets a better chance of selection. After the fittest members of the population 

of the first generation are selected using the fitness function, the next generations are reproduced 

from the chromosomes of the first-generation fit population’s members. This reproduction is a 

genetic operation called crossover or recombination. Crossover mimics the biological 

recombination of two single chromosomes or haploids organisms. This process is followed by 

mutation and in some cases with inversion. A mutation is randomly changing the allele (usually 0 

or 1 of binary genes) values in the chromosomes at some locations while inversions are the 

operation of reversing the order of the chromosomes at certain locations [53].    

This process will be executed iteratively to minimize the given objective/fitness functions until the 

genetic algorithm terminates the optimization process as the pre-settled stopping criteria is 

fulfilled. Pre-settled stopping criteria are necessary since some optimization problems could be 

difficult to figure out the exact optimal value or they need a longer computational time to find an 

optimal solution. Finding the optimal solution is a tradeoff among the level of optimality, 

computational resources, and execution time; therefore, there should be a means to stop the 

execution to handle this tradeoff.  
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Also, the genetic algorithm stops execution depending on the stopping criteria and gives the best 

fit solution from all solutions within the time of its execution. There are different means of 

terminating genetic algorithm execution. Some of the common execution termination means are: 

• Maximum Number of Generation 

The genetic algorithm stops when the maximum number of iterations is reached.  

• Time Limit 

The maximum time the genetic algorithm runs before its execution stops. 

• Fitness Value Limit 

The genetic algorithm stops when the best fitness value returned is below the fitness limit. 

• Number of Stall Generation 

If fitness value average change over specified stall generations is below function tolerance, 

the genetic algorithm terminates.   

• Stall Time Limit 

The best fit solution does not show any improvement within stall time, genetic algorithm 

iteration terminates.  

• Function Tolerance 

The average change in fit solution within the stall generation is below the threshold level, 

the execution stops.   

One of the drawbacks of genetic algorithm is best individuals in generations have a chance of 

being lost for the next generations because genetic operations like cross-over and mutation may 

lead to unfit individuals as compared to the individuals before the operations. Thus, there is a need 

to keep some of the best individuals for the next generation without letting them pass through 

genetic operators. This process is commonly known as Elitism. It guarantees the probability of 

losing the best individuals in the cross over and mutation. In elitism process, some percentages of 

the best individual in the given generation directly will become a member of the next generation.  
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5 Attitude Control  

In this section, controller designing methods will be discussed. The dynamics of the plants are 

taken from the state space mathematical model of the attitude dynamics and kinematics. First, the 

LQR controller is discussed using constraint genetic algorithm optimization by considering 

actuator saturation. The second Takagi Sugeno Kang (TSK) based fuzzy logic controller is 

considered using the adaptive neuro-fuzzy inference system (ANFIS). ANFIS will use state errors 

with their corresponding control signals that are sampled from genetically tuned LQR simulation 

as training data. The predefined fuzzy input membership function parameters are tuned as well as 

the fuzzy rules and output functions in fuzzy rules are developed applying hybrid training 

combining backpropagation and least square methods in the ANFIS neuro-fuzzy system.  

5.1 Linear Quadratic Regulator  

Linear quadratic regulator (LQR) is a feedback controller that the states are controlled to settle to 

zero state values. The satellite attitude control using LQR in this thesis enables the identity 

rotational matrix of between the body-fixed body frame and the body-centered orbit frame of the 

CubeSat that all corresponding axis of the two reference frames are parallel. This attitude control 

enables nadir pointing attitude control by pointing the third axis of the satellite body-fixed body 

frame points to the Earth’s center.  

For the given state-space model,  

 �̇� = 𝐴𝑥 + 𝐵𝑢 (5.1) 

 

the linear quadratic regulator determines the “K” gain matrix and the control vector signal u  

 𝑢 = −𝐾𝑥 (5.2) 

 

that minimizes the performance index J. 

 𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)
∞

0

𝑑𝑡 (5.3) 
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Where, R- is a positive definite matrix, and Q- is a positive definite matrix or semi-positive definite 

matrix that penalize the control energy and the states, respectively.  

The gain K is given by 

 𝐾 = 𝑅−1𝐵𝑇𝑃 (5.4) 

 

Where, P- is a symmetric positive definite matrix and it is a solution of algebraic Riccati equation. 

  𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 (5.5) 

 

The controller designing process is an iterative selection of the Q and R matrixes until the desired 

performance is obtained. This iterative computation is tiresome and tedious. The genetic algorithm 

can be used for optimal selection of Q and R matrix based on the given constraint cost or objective 

function. This thesis applies a genetic algorithm for optimal LQR design.   

 

Figure 5.1 LQR Controller for General Linear system 
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5.1.1 Fitness Function 

The fitness function is the core concept of genetic algorithm optimization. The optimization 

process tries to achieve the goal of the fitness or objective function. The genetic algorithm search 

for the values of the parameters that satisfy the fitness function within the given search space. 

The goal of the LQR based attitude control of CubeSat in this thesis is to achieve a highly stable 

and fast settling attitude controller with unsaturated control energy. This goal can be used to 

develop a fitness function that the genetic algorithm will use for the optimization of LQR. 

• Fitness Objective Function-1  

The fitness function that achieves fast settling time and high stability considered. In the S-plane, 

this indicates the real part of the eigenvalues of the states must be located far from the origin to 

the left of S-plane. The larger the magnitude of the real part of the eigenvalues located on the left 

side of the S-plane the faster the system settles and the more stable system becomes. Also, the 

larger sum of all the magnitude of the real part of the eigenvalues located on the left side the faster 

the system settles and the more stable system becomes. It follows that the goal of the fitness 

function is to maximize this sum which is the same as minimizing the reciprocal of the sum.  Thus, 

fitness function, f(x) is developed as follows: 

 

𝑓1(𝑥) = 1
(∑ 𝐸(𝑖)𝑛

𝑖=1 )⁄    

𝑤ℎ𝑒𝑟𝑒: 𝑖 = 1,2,3…6  𝑖𝑠 𝑖𝑑𝑒𝑥 𝑡𝑜 𝑟𝑒𝑓𝑒𝑟𝑒 𝑠𝑖𝑥 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒      

𝐸 = 𝑎𝑏𝑠(𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴 − 𝐵𝐾))) 

(5.6) 

Where, A is state matrix, B input matrix, and K gain matrix. The function ‘abs’ returns a positive 

value or magnitude of a given vector or scaler. The function ‘real’ returns the real part of the 

complex number. The function ‘eig’ returns the eigenvalues of a given matrix.  

Although this fitness function favors fast settling and stable system, this goal needs larger actuator 

energy that causes actuator saturation and this will be addressed using the second objective 

function and constraint function.        

• Fitness Objective Function-2 

The torque in the LQR is input signal for states [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] = [𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3]    
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 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝑢 = −𝐾𝑥 (5.7) 

Thus, the time-domain solution of the state is  

 𝑥 = 𝑒(𝐴−𝐵𝐾)𝑡𝑥0 (5.8) 

The input is  

 𝑢 = −𝐾𝑒(𝐴−𝐵𝐾)𝑡𝑥0 (5.9) 

The input is the torque  

 𝑡𝑜𝑟𝑞𝑢𝑒 = −𝐾𝑒(𝐴−𝐵𝐾)𝑡𝑥0 (5.10) 

It is assumed that the LQR will stabilize the system so that real part of the eigenvalue of (𝐴 − 𝐵𝐾) 

is located in the left side of S-plane, therefore; the t𝑜𝑟𝑞𝑢𝑒 = 𝐾𝑒(𝐴−𝐵𝐾)𝑡𝑥0 is maximum at zero 

seconds or the initial state.  

 𝑡𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥 = 𝑡𝑜𝑟𝑞𝑢𝑒(0) = −𝐾𝑒(𝐴−𝐵𝐾)(0)𝑥0 = −𝐾𝑥0 (5.11) 

 

To overcome the tradeoff between the need of better performance of the state using the maximum 

torque capability of the reaction wheel and the actuator saturation due to operation of the wheel at 

the maximum torque, operating value of the torque is considered as 50 % of the maximum torque 

for a given reaction wheel.  

ADCOLE Maryland Aerospace company products, MAI-400 attitude determination, and control 

integrated tool kit specifications are considered and the MAI-400 reaction wheel’s maximum 

torque is 0.635 mN.m [54]. To handle the tradeoff between performance and actuator saturation, 

50% of the maximum torque was used as an operating torque point in the controller design which 

is approximated as 0.3 mN.m [54].  

Choosing the maximum torque from the three individual reaction wheel’s maximum torque  

 𝐶1 = 𝑀𝑎𝑥(𝑎𝑏𝑠(𝑡𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥)) (5.12) 

         

Max- represents the maximum of the three-reaction wheel’s maximum torques and abs- represents 

absolute value or magnitude of reaction wheel’s maximum torques.  
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The second objective is based on the concept of avoiding any deviation from the reaction wheel’s 

assumed operating torque value which is 0.3 mN.m. The square torque deviation from the given 

operating torque limit is the second objective function. 

 𝑓2(𝑥) = (𝐶1 − (3 × 10−4))2 (5.13) 

 

The MATLAB script code combining the two objectives function is available in appendix-I.    

5.1.2 Constraint Function 

Constraint function in any optimization avoids unrealistic or off-limit values during optimization. 

One of the constraint considerations is actuator saturation. The controller might generate signals 

that are not addressed by the actuator at hand.   

This thesis considers constrained attitude torque in the genetically tuned LQR controller design. 

The maximum torque in the attitude dynamics is considered. 

Taking ADCOLE Maryland Aerospace company products, MAI-400 attitude determination, and 

control integrated tool kit specifications, the maximum reaction wheel torque which is 0.635 mN.m 

is used as actuator torque limit to avoid actuator saturation. The constraint function will be     

 
𝑡𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥 ≤ 𝑡𝑜𝑟𝑞𝑢𝑒 𝑙𝑖𝑚𝑖𝑡 

𝑡𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥 = −𝐾𝑥0 ≤ 0.635 mN.m 
(5.14) 

   

The constraint function MATLAB script code used in the genetic algorithm optimization of the 

LQR controller is shown in the appendix (see appendix-II).   

5.2 Fuzzy Logic Controller Design  

Fuzzy logic mimics the intuitive and vague way of human uncertain reasoning and decision 

making to solve engineering problems. The fuzzy controller applies a fuzzy logic concept with 

control theory which gives a chance of easy controlling means using simple linguistics of “if and 

then rules”. 

The fuzzy logic controller in this thesis consists of fuzzification, fuzzy rule base, and TSK fuzzy 

inference system. ANFIS will develop the fuzzification, fuzzy rule base, the output functions in 

the TSK inference system from the training data.  
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5.2.1 Neuro-Fuzzy System 

The neuro-fuzzy system considered in this thesis is the adaptive neuro-fuzzy controller system 

(ANFIS). ANFIS will be used to optimal adjustment of the input membership function parameter 

and develop a fuzzy rule base and TSK inference system. The consequents of the TSK inference 

system are linear functions that their parameters are modified through learning methods in ANFIS.  

The adaptive neuro-fuzzy controller system (ANFIS) is used for optimal adjustment of the input 

membership function and output function parameters and to drive a fuzzy rule base. ANFIS 

commonly uses either a backpropagation or hybrid (backpropagation and least square estimator) 

learning methods. In the hybrid learning method, the least square learning will be used to develop 

optimal consequent parameters of ANFIS while the back-propagation learning rule will be used to 

develop optimal premise parameters of ANFIS. Hybrid learning is considered for this thesis. 

Samples are taken from optimally tuned LQR controllers using a genetic algorithm. Three state 

inputs which are torque inputs of the system and the corresponding six states are sampled from the 

simulation of genetically tuned LQR controllers. The states and state inputs are considered as the 

inputs and the output of the training and testing data. These multiple outputs sampled training data 

will be organized into three distinct single output training data since ANFIS supports single output 

training. Distinct three groups training data given to ANFIS and it returns optimally tuned input 

membership function, output function, and fuzzy rule base for each group of training data. Thus, 

three different fuzzy systems will be developed from the final results. These three separated fuzzy 

systems become a fuzzy controller used to control the three reaction wheels.     

5.2.2 Fuzzification 

The fuzzy logic controller (FLC) for the CubeSat attitude control used in this thesis uses a state-

based fuzzy logic controller. The fuzzification process tries to group each feed-back state to input 

membership functions. The universe of discourse of feedback states is the range of states' feed-

back values.    

The sampled data from genetically tuned LQR simulation of CubeSat attitude kinematics and 

dynamics plant are used to develop a membership function for each state using ANFIS. First grid 

partitioning is used to group each sampled state values into three general bell-shaped membership 

functions based on characters that the sampled data shows. The parameters of the ball-shaped 
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membership function will be further optimized using hybrid training in ANFIS such that fine-

tuned bell-shaped input membership functions are developed at the end.  

Each state is considered to have three input membership functions. Thus, each of the three fuzzy 

systems has 18 input membership functions that are developed for the six states.  

Thus, every state’s membership functions are considered to be the input membership function in 

the FLC. The bell-shaped membership function is selected because they have three parameters to 

express bell shape which makes it adaptive during learning and is free from sharp corners so that 

they are continuous and differentiable at any point. 

5.2.3 Fuzzy Rule Base 

The rules of the fuzzy logic controllers are based on if and then premise and consequence relations. 

The premise consists of all the six states' membership function (MF) combinations while the 

consequent consists of the action that will be applied if the premise is satisfied. For the six states 

that each state has three membership functions, there are three the power of six fuzzy rule bases 

which yields 729 rules. ANFIS will develop those rules. The three fuzzy systems that will be used 

to control three reaction wheels have their own 729 rules.   

The form of the rules looks like     

𝐼𝑓 𝑞1 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  𝑞2 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  𝑞3 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  �̇�1𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  �̇�2 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  �̇�3𝑖𝑠 𝑀𝐹1   

𝑡ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑚𝑏𝑒𝑟ℎ𝑠𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_1   

⋮ 

⋮ 

𝐼𝑓 𝑞1 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  𝑞2 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  𝑞3 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  �̇�1𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  �̇�2 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑   �̇�3𝑖𝑠 𝑀𝐹3  

𝑡ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑚𝑏𝑒𝑟ℎ𝑠𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑛 

5.2.4 Fuzzy Inference System 

The Takagi-Sugeno-Kang (TSK) inference system is applied to the FLC. The antecedents are 

combinations of state membership functions and the consequents are linear equations. The TSK 

inference system is dictated as follows 
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𝐼𝑓 𝑞1 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  𝑞2 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  𝑞3 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  �̇�1𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  �̇�2 𝑖𝑠 𝑀𝐹1  𝑎𝑛𝑑  �̇�3𝑖𝑠 𝑀𝐹1   

𝑡ℎ𝑒𝑛 𝑧1 = 𝑓1(𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3) 

⋮ 

⋮ 

𝐼𝑓 𝑞1 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  𝑞2 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  𝑞3 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  �̇�1𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑  �̇�2 𝑖𝑠 𝑀𝐹3  𝑎𝑛𝑑   �̇�3𝑖𝑠 𝑀𝐹3  

𝑡ℎ𝑒𝑛 𝑧1 = 𝑓𝑛(𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3) 

The consequents are a linear function that has a form as shown  

𝑓𝑖(𝑥, 𝑦) = 𝑚1𝑞1 + 𝑚2𝑞2 + 𝑚3𝑞3 + 𝑚4�̇�1 + 𝑚5�̇�2 + 𝑚6�̇�3 + 𝑏1 

Where: i=1, 2, 3… n 

Each output function might be different from the other, therefore; there will be a maximum of 729 

distinct functions that are the results of the TSK inference system.   

 

Figure 5.2 ANFIS Based FLC Design Flow Chart 
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5.2.5 Fuzzy Logic Controller  

There are six states: the three quaternions vector components and their corresponding rates. Every 

state has 3 membership functions.  As a result, 18 state membership functions are used in the single 

fuzzy logic controller as an input membership function. Also, three torques are control signals 

(state inputs) of the system which are output membership function in the fuzzy rule base and linear 

output function TSK inference system.  

Three fuzzy systems developed from ANFIS. Each fuzzy system controls each reaction wheel in 

the CubeSat.   

• The first fuzzy system is developed from ANFIS using the sampled data of six states and 

the first state input or control signal. It approximates the input state one of genetically tuned 

LQR and will control the reaction wheel one.   

• The second fuzzy system is developed from ANFIS using the sampled data of six states 

and the second state input or control signal. It approximates the input state two of 

genetically tuned LQR and will be used to control the reaction wheel two.  

• The third fuzzy system FLC is developed from ANFIS using the sampled data of six states 

and the third state input or control signal. It approximates the input state three of genetically 

tuned LQR and controls the reaction wheel three. 

Finally, each developed three different fuzzy systems are the fuzzy logic controllers that can be 

used to control the CubeSat attitude.    
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Figure 5.3 FLC Designed Using ANFIS 
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6 Attitude Control Simulation 

In this section, the control methods developed in the previous chapter are simulated by applying 

them to the attitude mathematical model. The simulation results are presented using graphical 

results.   

Matlab software is used for the simulation of the genetically tuned LQR and also FLC which is 

developed by ANFIS using training sampled data taken form the simulation of genetically tuned 

LQR controller.  Matlab script codes, built-in tools, and applications, such as optimization toolbox 

for genetic algorithm optimization and Neuro-fuzzy designer app for ANFIS and SIMULINK for 

controller simulations are used.  

6.1 Simulation Input Parameter 

The simulation runs based on input parameters. These parameters include the mass inertia, orbit’s 

orbital elements, and initial conditions of the states.  

• Initial Conditions State, 𝑋0 

𝑋0 =

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

�̇�1

�̇�2

�̇�3]
 
 
 
 
 

=

[
 
 
 
 
 
0.6
0.5
0.3
0
0
0 ]

 
 
 
 
 

 

• Mass inertial Matrix in Kg.m2  

[

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] = [
0.0026 0 0

0 0.0024 0
0 0 0.0022

] 

• Standard Values 

 

No. Standard Parameters Standard Values 

1 Universal Gravitational Constant (Km3/s2), μ 398,600 

2 The radius of Earth (Km) 6378 

 

Table 6.1 Scientific Standard Values 
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• Necessary Orbital Elements Orbit 

 

No. Parameters Values 

1 
The radius of the Orbit (Km), 𝑎 (considering CubeSat from 400 km 

from Earth’s surface). (i.e. a = 400 + Raduis of Earth) 
6778 

2 The eccentricity of the Orbit, 𝑒 ≈ 0 (assuming circular orbit) 0 

3 
Orbital Inclination, i (Considering Deployment from international Space 

Station (ISS)). 
51.60 

 

Table 6.2 Orbit Parameters 

6.2 Linear Quadratic Regulator  

The linear quadratic regulator (LQR) control method stated in the previous chapter is used in this 

subsection and it is genetically optimized.  

6.2.1 LQR Optimization Using Genetic Algorithm 

The optimization is conducted by applying a genetic algorithm based on the objective and the 

constraint functions discussed in the previous chapter. The Q and R matrix are assumed to be a 

diagonal matrix with identical elements.  

𝑄 =

[
 
 
 
 
 
𝑞 0 0 0 0 0
0 𝑞 0 0 0 0
0 0 𝑞 0 0 0
0 0 0 𝑞 0 0
0 0 0 0 𝑞 0
0 0 0 0 0 𝑞]

 
 
 
 
 

 ,   𝑅 = [
𝑟 0 0
0 𝑟 0
0 0 𝑟

] 

6.2.2 Genetic Algorithm Input Parameters 

The genetic optimization to tune LQR tries to find optimal values of gain matrix K by searching 

for optimal state penalizing matrix, Q and state input penalizing matrix, R within the given 

searching space. The following table shows the input values and the techniques used in each type 

of genetic operators.  
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No. Genetic Optimization Setups Techniques and Values Selected  

1. Problem 

Setup 

Fitness Function See Appendix-I 

Number of variables Two variables q and r  

Non-Linear 

Constraint  

See Appendix-II 

Bounds Lower Bound- and Upper Bound- (i.e. the bounds only 

consider the positive values for q and r to handle the 

conditions of positive definiteness of R matrix and 

positive definiteness matrix or semi-positive 

definiteness Q matrix). The bound assumed for q is [0 

1000] and that of r is [0 1000].     

2. Population Size 50  

3. Creation Function Constrained Dependent 

4. Initial population  The default values that are initialized from the creation 

Function. 

5. Initial Score Default which means score will be specified by the 

score of the initial population using the fitness 

function.  

6. Initial Range [0,20] 

7 Fitness Scaling Rank Scaling 

8. Selection Tournament Selection with a tournament size 10 

9. Elite Count 0.05 times population size 

10. Reproduction through Crossover 

Fraction 

0.8 

11. Mutation Constrained Dependent based on Adaptive Feasible 

mutation  

12. Crossover  Constrained Dependent based on Scattered Crossover 

13. Migration Forward direction 

0.2 fraction of the total population  

Migration Occurs in 20 generation intervals 
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14. Pareto Front Population Fraction  Considering the default value 0.35  

15. Stopping Criteria Number of Generations 500 

Time Limit Inf 

Fitness Limit 0.00001 

Stall Generations 450 

Stall Time Limit Inf 

Function Tolerance 0.000001 

Constrained Tolerance 0.000001 

  

Table 6.3 Genetic Algorithm Input Value and Their Description 

6.2.3 Genetic Algorithm Optimization Results 

Multi-objective Genetic algorithm optimization is applied using the optimization tool usually 

retrieved from the MATLAB command window by typing ‘optimtool’. Taking the input 

considerations and values from the above table and applying appendix I and II MATLAB scripts 

code, the simulation results are obtained. The genetic algorithm results are discussed as follows: 

• Objective Function and Tuned Parameter Values 

20 different simulations are made and each simulation has been running over 500 generations to 

find the values of q and r within the bound of [0 1000]. The best value is selected combining 

objective function one and two.   
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Simulation 

Attempts 

Objective Function-1 Objective Function-2 q r Maximum 

Torque 

1 0.6333 5.29 x 10-09 7.38 x 10-06 19.0814 0.000373 

2 0.6191 7.93 x 10-09 5.65 x 10-06 13.4153 0.00038903 

3 0.6426 3.90 x 10-09 6.51 x 10-06 17.7811 0.000348  

4 0.5061 7.08 x 10-08 1.58 x 10-05 17.7287 0.000566 

5 0.526 5.16 x 10-08 1.52 x 10-05 19.7005 0.000527 

6 0.5824 1.86 x 10-08 6.65 x 10-06 12.5522 0.000436 

7 0.4839 9.88 x 10-08 1.56 x 10-05 14.8788 0.00061425 

8 0.7102 7.08 x 10-17 4.50 x 10-06 17.9447 0.00029999 

9 0.5436 3.84 x 10-08 4.92 x 10-06 7.1836 0.000496 

10 0.6361 4.86 x 10-09 1.55 x 10-05 40.5938 0.00037 

11 0.7102 1.99 x 10-16 4.07 x 10-06 16.2314 0.00029999 

12 0.7109 3.28 x 10-13 4.09 x 10-06 16.398 0.000299 

13 0.4763 1.10 x 10-07 2.24 x 10-05 20.1277 0.000632 

14 0.7102 1.29 x 10-17 2.56 x 10-06 10.2185 0.0003 

15 0.0195 0.0021 0.0742 12.4582 0.0464 

16 0.5141 6.24 x 10-08 1.17 x 10-05 13.951 0.00055 

17 0.7102 4.20 x 10-18 4.08 x 10-06 16.2816 0.0003 

18 0.0253 0.0012 0.0645 18.9558 0.035 

19 0.7098 9.63 x 10-14 7.59 x 10-06 30.2184 0.0003 

20 0.5853 1.7496 x 10-08 1.053 x 10-05 20.2422 0.00043232 

 

Table 6.4 Simulation Attempts 

The 10 best optimal values using the objective function-1(the minimum values) are selected and 

again the best optimal values from these ten fittest values are selected using objective function-2 

(the minimum value). Thus, simulation attempt 20 is selected as the optimal attempt. The following 

table states these optimal results. 

 



62 

 

  No. Parameters Numerical Evaluation 

1. 
Fitness Functions 

Results 

Objective Function-1 0.5853 

Objective Function-2 1.7496 x 10-8 

2. q  0.1053 x 10-4 

3. R 20.2422 

 

Table 6.5 Genetic Algorithm Optimization Results 

• Pareto Plot 

The plot shows sample non-inferior values in the last generation which indicates two objective 

function value distributions. The last generation non-inferior values of the two fitness objectives 

function considered in the genetic algorithm optimization are shown in the plot below.  

  

Figure 6.1 Pareto Plot between Fitness Function or Objective Function One and Two 

 

• The score of the Last Generation 

The score of the last generation evaluated in two fitness objective functions is: 
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Figure 6.2 Score Range of Different Individuals in the Last Generation 

The score plot of the individuals implies the last generation individuals’ fitness function value 

ranges. The final optimal individuals’ fitness values are within the ranges shown in the plot.  

Stopping Criteria 

Genetic algorithm execution terminated as the maximum number of generations is met with the 

one set on the stopping criteria. 

  

Figure 6.3 Percentage of Stopping Criteria Met 

• Average Pareto Spread 

The average values for the r and q parameters are indicated in the spread plot shown below. The 

plot indicates that the early generation average values of r and q values are around zero that makes 
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state and state input penalizing matrix small. But the average values of r and q values are changed 

over the upcoming generations that lead to the optimal values.   

 

Figure 6.4 Average Pareto Spread over All Generations 

• Mutation and Cross-Over 

Mutation and cross-over across the whole generations are shown as   

 

Figure 6.5 Mutation and Cross-Over over Generations 

• State Penalizing Matrix Q and The Input Penalizing Matrix R 

Finally, the values of the state penalizing matrix Q and the input penalizing matrix R are 
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𝑄 =

[
 
 
 
 
 
𝑞 0 0 0 0 0
0 𝑞 0 0 0 0
0 0 𝑞 0 0 0
0 0 0 𝑞 0 0
0 0 0 0 𝑞 0
0 0 0 0 0 𝑞]

 
 
 
 
 

= 

1 × 10−5  

[
 
 
 
 
 
1.053 0 0 0 0 0

0 1.053 0 0 0 0
0 0 1.053 0 0 0
0 0 0 1.053 0 0
0 0 0 0 1.053 0
0 0 0 0 0 1.053]

 
 
 
 
 

,   

    𝑅 = [
𝑟 0 0
0 𝑟 0
0 0 𝑟

] = [
20.2422 0 0

0 20.2422 0
0 0 20.2422

] 

A. Linear Quadratic Regulator Simulation   

 

The values of the state penalizing matrix Q and the input penalizing matrix R have been found out 

using a genetic algorithm. Applying the ‘lqr (A, B, Q, R)’ command in MATLAB the gain matrix 

K is computed.  

𝐾 = [
−7.2125 × 10−4 −3.8858 × 10−20 1.4367 × 10−6

−3.1223 × 10−20 −7.2125 × 10−4 −2.6680 × 10−19

−1.4367 × 10−6 −1.3968 × 10−19 −7.2125 × 10−04

−2.8320 × 10−3 −2.0192 × 10−19 4.1151 × 10−12

−2.1875 × 10−19 −2.7000 × 10−3 −5.4709 × 10−19

4.8633 × 10−12 −5.9683 × 10−19 −2.600 × 10−3

] 

The simulation results of state and state inputs are shown in the following consecutive figures as 

states Vs time and state input Vs time plots.  
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Figure 6.6 Simulation Plot of State One to State Three Vs Time. 

The first three states (quaternion vector one, quaternion vector two, and quaternion vector three) 

plots over time are shown in the above plots. The three quaternion vectors diminish to zero within 

a finite time range and their steady-state errors are zero.  They settle around 12 seconds. States one 

settles 12.171 seconds while state two and state three has a settling time 11.798 seconds and 11.440 

seconds, respectively.     

  

Figure 6.7 Simulation Plot of State Four to State Six Vs Time. 
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The states four, five, and six (three quaternion vector rates) plots in the above figure show that 

their steady-state errors are zero. State four settles in 12.167 seconds. State five has a settling time 

of 11.796 seconds and the last state settles in 11.430 seconds. The following table summarizes the 

steady-state and transient properties of the states. 

States 
Rise Time 

(s) 

Fall 

Time (s) 

+Over 

shoot 

-Under 

shoot 

Settling 

time (s) 

Steady-

State 

error 

State one/q1 - 5.925 - 3.646 % 12.171 0 

State two/q2 - 5.701  - 3.646 % 11.798 0 

State three/q3 - 5.462 - 3.646 % 11.440 0 

State four/q1 rate 5.924 1.719 3.646 % 0.521 % 12.167 0 

State five/q2 rate 5.700 1.650 3.646 % 0.521 % 11.796 0 

State six/q3 rate 5.460 1.572 3.646 % 0.521 % 11.430 0 

 

Table 6.6 Transient and Steady-State Performance Measures for LRQ 

The steady-state error for all states (𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3) are zero and the system regulates to zero 

states. Since the sum of the square of all quaternion elements (𝑞0, 𝑞1, 𝑞2 𝑎𝑛𝑑𝑞3) equals to one (see 

equation 3.2) and the values of the vector components of the quaternion (𝑞1, 𝑞2, 𝑞3) are zero at 

steady state, the scalar component of the quaternion (𝑞0) is one. These quaternion values develop 

the identity transformation matrix which indicates every axis of the body-fixed body reference 

frame lays over every corresponding axis of the body-centered orbit reference frame. Finally, the 

Z-axis of the body-fixed body reference frame points to the Earth’s center and the CubeSat 

becomes a nadir pointing satellite.              

The state inputs are reaction wheel torques. The peak values of these torques are 0.4323 x 10-3, 

0.3606 x 10-3and 0.2172 x 10-3 N.m. These values are constraint submissive that is less than the 

maximum torque limit of 0.635 mN.m in constraint function. The plots of the state inputs are 

shown below.  
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Figure 6.8 Simulation Plot of State Inputs Vs Time  

6.3 Adaptive Neuro-Fuzzy Inference System Based Fuzzy Logic Controller 

In this last subsection, the fuzzy logic controller (FLC) will be designed and applied to the attitude 

mathematical model. The FLC will be designed using the adaptive neuro-fuzzy inference system 

(ANFIS).  The state and control signal values at specific sampling time are taken from genetically 

tuned LQR simulation. Sampled data for the training and testing purposes are separately prepared. 

The FLC design will be developed using ANFIS by applying hybrid learning that combines the 

backpropagation learning algorithm and the least square estimator based on the training data. The 

testing data will be conducted to check the reliability of the ANFIS hybrid training.   

6.3.1 Adaptive Neuro-Fuzzy Inference System Input Parameter 

The ANFIS is employed to develop well-tuned input membership from the given input 

membership and linear output membership function using training data. Also, the fuzzy rules 

combining those input and output membership functions are developed.  

ANFIS uses hybrid learning. The hybrid learning method that uses two learning methods 

combining the backpropagation learning algorithm and the least square estimator.  
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MATLAB Neuro-Fuzzy Design Application Toolbox is used as an ANFIS platform to develop the 

fuzzy logic system. The following table shows the input for MATLAB Neuro-Fuzzy Design 

Application Toolbox. 

No. Input Description 

1. 
Input membership 

function 

Three Generalized bell-shaped functions for each state:  

The generalized ball-shaped membership function is advantageous since it 

has three parameters to describe the function that makes it more adaptive 

for learning and it does not include any means of the sharp corner which 

ease differentiation steps in the learning methods. 

2. 

Output 

Membership 

Function 

Linear function: 

ANFIS uses TSK fuzzy inference system. The linear function is selected 

for the Output Membership Function 

3. Training Epoch 6 

4. Learning Rule 

Hybrid learning: 

It combines the backpropagation learning algorithm and the least square 

estimator. The least-square method will be used to develop optimal 

consequent parameters through sequential forward updates while the 

backpropagation will be used to develop optimal premise parameters 

through the sequential back pass. 

5.  

General Fuzzy 

Inference System 

fuzzification  

Grid Partitioning: 

It is helpful to cluster the data to different generalized bell-shaped 

membership functions which will be further tuned through training.   

6. 
Training data 

sampling 

532 rows by 9 columns data are sampled at every 0.047 seconds from 

genetically tuned LQR  25 second simulation. The 9 columns are six state 

signals and three control signals or state input.  

7. 
Testing data 

sampling 

109 rows by 9 columns data are sampled at every 0.23 second from 

genetically tuned LQR  25 second simulation.  

8.  Training Data See Appendix-III 

9. Testing Data See Appendix-IV 

 

Table 6.7 Inputs for Matlab Neuro-Fuzzy Designer 
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Since ANFIS does not support multiple output data instead it supports single output data, the 

training and testing data set that consists of six states as input, and three state inputs as output are 

classified into three class single output data groups. These three classes are: 

• The first group training data is prepared from six states and the first state input by taking 

1, 2, 3, 4, 5, 6, and 7 columns of the table available at appendix III and IV.  This data will 

be used to develop a fuzzy system that mimics the first state input of genetically tuned 

LQR.  

• The second group training data is prepared from six states and the second state input by 

taking 1, 2, 3, 4, 5, 6 and 8 columns of the table available at Appendix IV and V. This data 

will be used to develop a fuzzy system that mimics the second state input of genetically 

tuned LQR. 

• The third group training data is prepared from six states and the third state input by taking 

1, 2, 3, 4, 5, 6 and 9 columns of the table available at Appendix IV and V. This data will 

be used to develop a fuzzy system that approximates the third state input of genetically 

tuned LQR. 

These three training data groups are separately given to MATLAB Neuro-Fuzzy Design 

Application Toolbox and three distinct fuzzy systems are developed form them. 

6.3.2 ANFIS Result  

MATLAB Neuro-Fuzzy Design Application Toolbox which is the ANFIS platform takes the 

inputs mentioned earlier and develops a fuzzy system that can be used in the fuzzy logic controller. 

The fuzzy systems developed from ANFIS are three fuzzy systems using the three classes of data 

described earlier. Each fuzzy logic system mimics the state inputs.   

• Fuzzy Logic System one approximates state-input one of genetically tune LQR and 

controls reaction wheel one.  

• Fuzzy Logic System two approximates state-input two of genetically tune LQR and 

controls reaction wheel two. 

• Fuzzy Logic System three approximates state-input three of genetically tune LQR and 

controls reaction wheel three. 
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A. Training and Testing Errors  

 

The training errors shows how much the fuzzy system developed from ANFIS mimics the state 

inputs of genetically tuned LQR for the given training data. The testing error shows the 

generalization ability of the developed fuzzy systems for state inputs values of genetically tuned 

LQR that are not included in the training.      

Error Fuzzy logic system One Fuzzy logic system Two Fuzzy logic system Three 

Training Error 3.2951 x 10-8 2.2418 x 10-8 2.1895 x 10-8 

Testing Error 7.1294 x 10-8 6.3248 x 10-8 4.3193 x 10-8 

 

Table 6.8 Training and Testing Average Error 

The fuzzy logic system one approximates the state input one of genetically tuned LQR with 3.2951 

x 10-8 average error while the fuzzy logic system two mimics the state input two of genetically 

tuned LQR with 2.2418 x 10-8 average error. Also, the fuzzy logic system three approximates the 

state input three of genetically tuned LQR by average error deviation of 2.1895 x 10-8.    

The three fuzzy systems have relatively similar generalization error for values other than the 

training values taken from genetically tuned LQR. 

B. Fuzzification and States’ Membership Signals. 

General bell-shaped is selected as the fuzzy input membership function since it has three 

parameters to describe the function that makes it more adaptive for learning and it does not include 

any means of sharp corners that ease differentiation steps in the learning methods. They are 

developed by fuzzifying the state feed-back based on the universe of discourse and the desired 

number of fuzzy membership functions for each state.  Three input membership functions for each 

feed-back state are considered to handle the trade-off fuzzy generalization and rule bulkiness. Grid 

partitioning method available in ANFIS changes the crisp state feed-back data to different general 

bell-shaped membership functions which will be further tuned through backpropagation and least 

square estimator training methods available in the ANFIS. Three generalized bell-shaped 

membership functions are developed for each state. Thus, 18 input membership functions are 

developed for each fuzzy system that consists of six states as an input. 
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Figure 6.9 Generalized Bell-Shaped Input Membership Function 

The parameters of input general bell-shaped input membership developed from ANFIS are shown 

in the following table. 

No. States Membership 

Function (MF)  

Parameters (a, b, c) for 

fuzzy system One 

Parameters (a, b, c) for 

fuzzy system Two 

Parameters (a, b, c) 

For fuzzy system Three 

1. 𝑞1 𝑞1 MF one (0.1552 2 -0.02078) [0.155 0.593 -0.0209] [0.1552 2 -0.02076] 

𝑞1 MF two (0.1549 2 0.2895) [0.154 2 0.141] [0.1552 2 0.2896] 

𝑞1 MF three (0.1552 2 0.6) [0.155 2 0.6487] [0.1552 2 0.6] 

2. 𝑞2  𝑞2 MF one (0.1292 2 -0.01693) [0.1291 2 -0.01702] [0.1292 2 -0.01691] 

𝑞2 MF two (0.1294 2 0.2414) [0.1296 2 0.2412] [0.1292 2 0.2415] 

𝑞2 MF three (0.1292 2 0.5) [0.1293 2 0.4999] [0.1292 2 0.5] 

3. 𝑞3  𝑞3 MF one (0.07743 2 -0.009795) [0.07741 2 -0.00979] [0.07743 2 -0.009762] 

𝑞3 MF two (0.0786 2 0.1447) [0.07956 2 0.146] [0.07742 2 0.1452] 

𝑞3 MF three (0.07745 2 0.3) [0.07803 2 0.2997] [0.07743 2 0.3] 

4. �̇�1  �̇�1 MF one (0.02592 2 -0.1002) [0.02497 2 -0.1014] [0.02551 2 -0.1002] 

�̇�1 MF two (0.02676 2 -0.04934) [0.03038 2 -0.04921] [0.02422 2 -0.04996] 

�̇�1 MF three (0.02608 2 0.002248) [0.02191 2 0.004907] [0.02595 2 0.001763] 

5. �̇�2 �̇�2 MF one (0.02284 2 -0.08652) [0.02319 2 -0.08708] [0.02266 2 -0.08644] 

�̇�2 MF two (0.0262 2 -0.03969) [0.02837 2 -0.04434] [0.02351 2 -0.04101] 

�̇�2 MF three (0.02444 2 0.0006489) [0.02454 2 0.003517] [0.02325 2 0.002331] 

6. �̇�3 �̇�3 MF one (0.01476 2 -0.05308) [0.01466 2 -0.05341] [0.01495 2 -0.05359] 

�̇�3 MF two (0.01505 2 -0.02354) [0.01932 2 -0.02125] [0.02098 2 -0.02031] 

�̇�3 MF three (0.02055 2 0.0004801) [0.02119 2 9.58e-05] [0.01504 2 0.003171] 

 

Table 6.9 Parameters of General Bell-Shaped Parameter Values 
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ANFIS also develops the universe of discourse of the state feed-back. The universe of discourse 

for the three fuzzy systems is the same since they use the same state feed-back. 

No. States feed-back Universe of Discourse  

1. 𝑞1(state one) [-0.02076 0.6] 

2. 𝑞2 (state two) [-0.0169 0.5] 

3. 𝑞3 (state three) [-0.009759 0.3] 

4. �̇�1 (state four) [-0.09992 0.003457] 

5. �̇�2(state five) [-0.08654 0.002926] 

6. �̇�3(state six) [-0.05419 0.001765] 

 

Table 6.10 Universe of Discourse of the Input Membership Functions 

C. Output Membership Function 

There are 729 output membership functions for each fuzzy system that are generated from ANFIS. 

The output membership functions are linear function with the six states (𝑞1, 𝑞2, 𝑞3, �̇�1, �̇�2, �̇�3) as 

input variables and seven parameters designated as pn, n= 0,2,3…6. The six parameters are the 

coefficients to the six variables and the last parameter is a constant. 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 + 𝑝4�̇�1 + 𝑝5�̇�2 + 𝑝6�̇�3 + 𝑝0 

All 729 different membership functions are developed by changing the parameters of the above 

linear functions. The parameters for the sample membership function of the three fuzzy logic 

systems are available in appendix-V.     

The universe of discourse of the Output membership function for the three fuzzy is shown in the 

table below.  
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No. Output Membership Function Universe of Discourse 

1. 
Output membership function of 

fuzzy system one 
[ −8.6700 × 10−5     4.3232 × 10−4] 

2. 
Output membership function of 

fuzzy system two 
[−7.1900 × 10−5   3.6062 × 10−4] 

3. 
Output membership function of 

fuzzy system three 
[ −4.2700 × 10−5   2.1724 × 10−4] 

 

Table 6.11 Universe of Discourse of the Output Membership Functions 

D. Fuzzy Rule Bases 

Each fuzzy system has its own 729 rule bases. The rule bases are so bulky. Consequently, sample 

rule bases are shown in the figure below 

 

Figure 6.10 Sample Fuzzy Rule Base 
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6.3.3 Fuzzy Logic Controller Simulation  

Previously, the fuzzy system is developed using training data taken from genetically tuned LQR 

simulation. The training data is given to the ANFIS system and in return, three fuzzy systems that 

can separately control three reaction wheels are obtained. Thus, the fuzzy system one, two, and 

three control reaction wheel one, two, and three, respectively. In the overall process, the fuzzy 

control system that mimics LQR is developed. This is confirmed in the simulations shown below.  

 

Figure 6.11 Simulation Plot of State One to State Three Vs Time. 

 

Figure 6.12 Simulation Plot of State Four to State Six Vs Time. 
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The six states (the three quaternion vectors and their corresponding rates) plots of the proposed 

FLC that mimics genetically tuned LQR is shown above. The FLC brings the states to zero steady-

state error within finite time. The steady-state and transient response properties of simulation states 

are summarized in the table shown. 

 States 

Performance Measures 

Rise Time 

(s) 

Fall Time 

(s) 

Oversho

ot 

Undersh

oot 

Settling 

time (s) 

Steady-State 

error 

State one/q1 - 5.938 - 3.646 % 12.445  0 

State two/q2 - 5.715 - 3.646 % 11.930 0 

State three/q3 - 5.478 - 3.646 % 11.595 0 

State four/q1 rate 5.921 1.698 3.646 % 0.469 % 12.339 0 

State five/q2 rate 5.713 1.651 3.646 % 0.521 % 12.012 0 

State six/q3 rate 5.466 1.590 3.646 % 0.521 % 11.637  0 

 

Table 6.12 Transient and Steady-State Performance Measures for FLC 

All the vector components of quaternion elements settle to zero state values. This indicates the 

transformation matrix between the body-fixed body reference frame and the body-centered orbit 

reference frame is the identity matrix. Thus, the Z-axis of the body-fixed body reference frame 

points to the Earth’s center and the CubeSat becomes a nadir pointing satellite.        

The fuzzy logic controllers that approximate the state inputs in the genetically tuned LQR obey 

the maximum torque constraint limit of 0.635 mN.m. The maximum control torques generated by 

the FLC controllers are 0.4323 mN.m, 0.3606 mN.m, and 0.2172 mN.m. The plots of the control 

signal developed by the three FLC are shown below.    
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Figure 6.13 Simulation Plot of FLC Inputs Vs Time. 

6.4 Computational Resources and Computational Time  

The fifth-generation Dell laptop is used for both genetic algorithm LQR optimization and the three 

fuzzy system design using ANFIS. This laptop has 2.40 GHz Intel(R) Core (TM) i5-6200U CPU 

processor and 8.00 GB installed RAM. The optimized LQR and the three distinct fuzzy systems 

can be loaded to onboard computers in the satellite once they are developed. MATLAB R2017a 

version is used for ANFIS based fuzzy system development, genetic algorithm optimization, and 

simulation.   

The tables shown below summarizes the computational time that the aforementioned laptop takes 

to develop the fuzzy systems using ANFIS and to optimize the LQR using genetic algorithm.  

Computation 
Simulation 

Attempts 

Computation Time for 

Each Attempt 

Total Computational 

Time for Total Attempts 

Genetic Algorithm 

Optimization of LQR 
20 

24 minutes and 19 

seconds 

8 hours, 6 minutes and 20 

seconds 

 

Table 6.13 Genetic Algorithm Computational Time 
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Computation Training Computational Time 

Fuzzy System Design 

Using ANFIS 

Fuzzy system-I 3 hours, 25 minutes and 8 seconds 

Fuzzy system-II 3 hours, 25 minutes and 8 seconds 

Fuzzy system-II 3 hours, 25 minutes and 8 seconds 

 

Table 6.14 ANFIS Computational Time 

Neuro-Fuzzy application, optimization toolbox, and Simulink environment available in the 

MATLAB are used for learning, optimization, and simulation.  

Resources Used from MATLAB Description 

“Optimtool” Optimization Tool Box 

Neuro-fuzzy Designer Application environment for ANFIS 

Simulink Graphical Simulation Environment 

  

Table 6.15 Resources Used form MATLAB 

 

6.5 Comparison between Genetically Tuned LQR and FLC Developed Using 

ANFIS 

The LQR and the FLC controllers are compared using transient performance characteristics. Both 

controllers show very similar transient performance characteristics as shown in table 6.6 and table 

6.12. The rise time of the quaternion rates of both LQR and FLC controllers are similar. Besides, 

the falling time of the quaternion vectors and their rates are almost identical both in LQR and FLC.  

Moreover, relatively the same over-shoot and under-shoot are observed in both LQR and FLC. 

Also, the settling time of the quaternion and their rates are less than 12.2 seconds for LQR while 

the settling time of quaternion and the quaternion rates are less than 12.5 seconds for FLC.  

Generally, both genetically tuned LQR and FLC developed using ANFIS have similar transient 

response characteristics with zero steady-state errors for each state. These similarities are expected 

from the simulations because the FLC is developed employing ANFIS that uses the sampled 

training and testing data taken from the simulation of genetically tuned LQR.     
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The simulation results obtained in this thesis show relatively similar results with others’ literature. 

Some of these are  

• The first literature is [55]. It investigates matrix gain PD controller to control 

aerodynamically disturbed single CubeSat. The attitude is represented using Euler angles. 

The system model actuated by tetrahedral configured 4 reaction wheels. The maximum 

control torque is below 2.5 x 10-3 N.m which is less than the maximum control torque in 

this thesis that uses three perpendicularly configured reaction torques. The plant settles 

within 0.003 orbits (it considers 1 orbit period as 5732 seconds) which is 17.196 seconds. 

Comparatively, the better settling time less than 12.5 seconds is achieved in this thesis. 

• The second literature reference is [56]. It studies a 27-unit CubeSat actuated by a four-

wheel pyramid reaction wheel array. The attitude is modeled using quaternion 

parametrization and the attitude controller used in this satellite design were PID and time-

optimal controllers. The system settles less than 21 seconds for PID and less than 17 

seconds for time-optimal control. Also, the better settling time is achieved in this thesis 

which is less than 12.5 seconds compared to PID and the time-optimal controllers.  

• The third literature reference is [46]. The satellite is a 500 kg satellite that uses Euler angles 

(roll, pitch, and roll) as a parametrization. Though it is a large satellite compared to 

CubeSat, its attitude is controlled using LQR that the system settles less than 10.2 seconds 

and it can be compared with the LQR attitude control of a CubeSat. The attitude system 

settles 2 seconds faster than the system in this thesis.  
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7 Conclusion and Recommended Future Work 

7.1 Conclusion 

The problems described in the literature review and problem justification as the research gap were 

optimization problem for optimal LQR tuning and challenge of FLC design in state-space form for 

multiple input multiple output CubeSat attitude control due to lots of rules that integrates many 

membership functions.  

The genetic algorithm to tune LQR is investigated as the solution for optimal LQR tuning. Two 

fitness functions and one constraint function are used for this optimization. The final results show 

that the values of the control torque are below the value of the actuator saturation level. A settling 

time less than 12.2 seconds and zero steady-state error is achieved within the system. Thus, LQR 

based reaction actuation can be used for pointing attitude control.    

The ANFIS is considered as a solution for FLC design. The training and testing data that consists 

of 6 states and 3 state inputs sampled from genetically tuned LQR simulation at different sampling 

times are taken. This data is feed to ANFIS to develop the fuzzy system that can be difficult if it 

is done with expert knowledge and intuitive guess. The fuzzy logic controllers developed is quite 

good in approximating the genetically tuned LQR. This was demonstrated in the small testing and 

training average errors found in the ANFIS training and testing. The developed FLC has zero 

steady-state error and settling time less than 12.5 seconds. Therefore, this FLC control can be used 

for pointing attitude control, and also, it can replace the genetically tuned LQR.         

7.2 Recommended Future Work 

The thesis considers only reaction wheels as CubeSat control actuators with genetically tuned LQR 

and FLC that mimics genetically tuned LQR. The attitude control further could be expanded 

considering other means of optimizations like particle swarm optimization (POS) with magnetic 

actuators and combining magnetic actuator and reaction wheels.     
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Appendix-I 

Fitness Function 

% This script code is GA optimization function is used in the MATLAB optimization toolbox, 

optimtool.  

% Symbols used in the script 

% μ        - Universal gravitational constant (km3/s2) 

% IXX               - Mass inertia in the CubeSat x-axis of body-fixed body frame (K g.m2) 

% Iyy                - Mass inertia in the CubeSat y-axis of body-fixed body frame (Kg.m2) 

% Izz                 - Mass inertia in the CubeSat z-axis of body-fixed body frame (Kg.m2) 

% a             - Orbital radius (Km) 

% ωc                - Orbital angular velocity (rad/s)  

% altitude  - Distance from the Earth’s surface to the CubeSat center of gravity (Km) 

% Q           - State punishment matrix    

% R           - Input punishment matrix    

 

 function Z = GA_optimization_Objective_Function (x) 

                      μ =3 98600;   

 raduis_of_earth = 6378;     

 altitude = 400; 

 a = raduis_of_earth + altitude;  

 ωc = sqrt (Ut/a^3);  

     

% Initialization of mass inertia and variable declarations 

 

 Ixx = 0.0026;  

 Iyy = 0.0024;  

 Izz = 0.0022;  

 G1 = (Izz-Iyy)/Ixx;  

 G2 = (Ixx-Izz)/Iyy;  

 G3 = (Iyy-Ixx)/Izz; 
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% State matrix 'A' and 'B' definitions  

 

A= [0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; (4*G1*ωc^2), 0, 0, 0, 0, (G1*ωc + ωc); 0,  

        (-3*G2*ωc^2), 0, 0, 0, 0; 0, 0, (-G3*ωc^2), (G3*ωc - ωc), 0, 0]; 

 B= [0, 0, 0; 0, 0, 0; 0, 0, 0; (-1/2*Ixx), 0, 0; 0, (-1/2*Iyy), 0; 0, 0, (-1/(2*Izz)]; 

 

% Initial condition of the CubeSat  

 

x0 = [0.6;0.5;0.3;0;0;0]; 

 

 % Input argument assigned to new variables and assigning diagonal matrix 'Q' & 'R' 

 

                    q   = x (1);  

                    r   = x (2);  

                    Q    = diag ([q q q q q q]) 

                    R    = diag ([r r r]) 

  

% Calculating the 'k' gain matrix using the linear quadratic regulator command 

 

                   K = lqr (A, B, Q, R) 

 % Calculating sum of the magnitude of the real part of Eigenvalue of the characteristic equation 

 

                   e = eig(A-B*k) 

                   f = real(e); 

                   h = abs(f); 

                   g = h (1,1) + h (2,1) + h (3,1) + h (4,1) + h (5,1) + h (6,1); 

 

% The state, X can be expressed as  𝑋 = 𝑒(𝐴−𝐵∗𝐾)𝑡𝑋0. State input, u which is a control torque will 

be defined as 𝑢 = 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐾 ∗ 𝑋 = 𝐾*𝑒(𝐴−𝐵∗𝐾)𝑡𝑋0. For a stable system that eigenvalues of 
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A-B*K are negative, the input, u is maximum at a time, t=0. Thus, the maximum input or control 

torque is  𝑢𝑚𝑎𝑥 = 𝑇𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥 = 𝐾 ∗ 𝑋0 (see fitness function discussed in chapter five).   

 

     Torquemax = -K*X0 

        c_1   = max (abs (Torquemax)); 

 

% 50% of the maximum torque of the reaction wheel of ADCOLE Maryland Aerospace product, 

MAI-400 which is 0.3 mN.m is considered. This value is taken as operating point reaction wheel 

torque to avoid a possibility of actuator saturation (taken from specification of Maryland 

Aerospace product, MAI-400 Attitude determination, and control integrated toolkits). Torque 

square deviation from the given operating torque limit. 

 

                  j= (c_1-(3*1.000e-04)) ^2; 

 

% the objective function 

 

                   Z (1) = (1/g); 

                   Z (2) = j 

end    

 

 

 

 

 

 

 

 



89 

 

Appendix-II 

Constraint Function 

% This script code is constraint function is used in the MATLAB optimization toolbox, optimtool.  

% Symbols used in the script 

% μ               - Universal gravitational constant (km3/s2) 

% IXX                  - Mass inertia in the CubeSat x-axis of body-fixed body frame (K g.m2) 

% Iyy                    - Mass inertia in the CubeSat y-axis of body-fixed body frame (Kg.m2) 

% Izz                    - Mass inertia in the CubeSat z-axis of body-fixed body frame (Kg.m2) 

% a               - Orbital radius (Km) 

% ωc                   - Orbital angular velocity (rad/s)  

% altitude    - Distance from the Earth’s surface to the CubeSat center of gravity (Km) 

% Q             - State punishment matrix    

% R             - Input punishment matrix 

function [c, c_eq] = Constraint_Function(x) 

 

% universal gravitational constant (in km3/s2) 

   

Ut = 398600;   

raduis_of_earth = 6378;     

altitude = 400; 

a = raduis_of_earth + altitude;  

ωc = sqrt (Ut/a^3);  

     

% Initialization of mass inertia and variable declarations 

     

I1 = 0.0026;  

I2 = 0.0024;  

I3 = 0.0022;  

G1 = (Izz-Iyy)/Ixx;  
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G2 = (Ixx-Izz)/Iyy;  

G3 = (Iyy-Ixx)/Izz; 

  

% State matrix 'A' and 'B' definitions  

 

A= [0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; (4*G1*ωc^2), 0, 0, 0, 0, (G1*ωc + ωc); 0,  

        (-3*G2*ωc^2), 0, 0, 0, 0; 0, 0, (-G3*ωc^2), (G3*ωc - ωc), 0, 0]; 

 B= [0, 0, 0; 0, 0, 0; 0, 0, 0; (-1/2*Ixx), 0, 0; 0, (-1/2*Iyy), 0; 0, 0, (-1/(2*Izz)]; 

 

% Initial condition of the CubeSat  

 

x0 = [0.6;0.5;0.3;0;0;0]; 

  

% Input argument assigned to new variables and assigning diagonal matrix 'Q' & 'R' 

 

  q   = x (1);  

  r   = x (2);  

  Q    = diag ([q q q q q q]) 

  R    = diag ([r r r]) 

  

% calculating the 'k' gain matrix using the linear quadratic regulator command 

  

K= lqr (A, B, Q, R); 

 

% The state, X expressed as 𝑋 = 𝑒(𝐴−𝐵∗𝐾)𝑡𝑋0. State input, u which is a control torque will be 

defined as 𝑢 = 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐾 ∗ 𝑋 = 𝐾*𝑒(𝐴−𝐵∗𝐾)𝑡𝑋0. For a stable system that eigenvalues of A-

B*K are negative, the input, u is maximum at a time, t=0. Thus, the maximum input or control 

torque is  𝑢𝑚𝑎𝑥 = 𝑇𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥 = 𝐾 ∗ 𝑋0 (see the constraint function discussed in chapter five).   

 

Torquemax =K*X0 

 c_1    = [Torquemax (1); Torquemax (2); Torquemax (3)]';                   
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 c_2    = max(abs(c_1)); 

 

% Considering maximum control torque, the maximum torque of the reaction wheel which is 0. 

635 mN.m to avoid a possibility of actuator saturation (taking the specification of Maryland 

Aerospace product, MAI-400 Attitude determination and control integrated toolkits).    

 

 c      = c_2-(0.635*1.000e-03); 

 c_eq   = []; 

 end 
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Appendix-III 

Training Data 

The training data is 532 rows by 9 columns data that is sampled at every 0.047 seconds from 

genetically tuned LQR 25 second simulation. The first 6 columns are six state signals which are 

inputs data to the ANFIS. The last three columns are state inputs that are considered to be the 

outputs data to ANFIS.  

Since ANFIS only supports multiple output data, the training data is grouped into three class single 

output data groups for the application of training.   

• The first group of training data is consisting of six states and the first state’s input by taking 

1, 2, 3, 4, 5, 6, and 7 columns of the training data table. The first 6 columns are input data 

and the seventh column is output data. It used to develop the fuzzy system that mimics 

LQR state-input one.  

• The second group of training data is consisting of six states and the second state’s input by 

taking 1, 2, 3, 4, 5, 6, and 8 columns of the training data table. The first 6 columns are input 

data and the eighth column is output data. It used to develop the fuzzy system that mimics 

LQR state-input two.  

• The third group of training data is consisting of six states and the third state’s input by 

taking 1, 2, 3, 4, 5, 6, and 9 columns of the training data table. The first 6 columns are input 

data and the ninth column is output data. It used to develop the fuzzy system that mimics 

LQR state-input three.  

The training data in the following table is the sample of training data.  
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States State Inputs 

1 2 3 4 5 6 1 2 3 

0.4013 0.324781 0.188162 -0.09987 -0.08654 -0.05408 6.33E-06 -1.87E-06 -5.44E-06 

0.49233 0.404277 0.238307 -0.0911 -0.08017 -0.05103 9.67E-05 7.28E-05 3.89E-05 

0.20826 0.160591 0.087802 -0.08121 -0.06757 -0.04021 -7.99E-05 -6.85E-05 -4.18E-05 

0.20446 0.157431 0.085923 -0.08049 -0.06689 -0.03976 -8.06E-05 -6.90E-05 -4.19E-05 

0.55049 0.455715 0.271251 -0.0717 -0.06376 -0.0411 0.000194 0.000155 8.87E-05 

0.00028 0.000442 0.000308 0.000431 0.000194 3.46E-05 1.43E-06 8.48E-07 3.14E-07 

0.1359 0.101064 0.05285 -0.0652 -0.05295 -0.03061 -8.67E-05 -7.16E-05 -4.19E-05 

0.15825 0.119295 0.063445 -0.07066 -0.05788 -0.0338 -8.61E-05 -7.19E-05 -4.26E-05 

-0.01275 -0.00875 -0.00403 0.003444 0.002805 0.00155 5.63E-07 1.34E-06 1.13E-06 

-0.01324 -0.00915 -0.00426 0.003455 0.002841 0.001586 2.43E-07 1.15E-06 1.07E-06 

0.08665 0.061511 0.030297 -0.05133 -0.0407 -0.02284 -8.29E-05 -6.67E-05 -3.79E-05 

0.19696 0.151207 0.082228 -0.07902 -0.06553 -0.03885 -8.19E-05 -6.97E-05 -4.22E-05 

-0.00101 -0.00026 9.24E-05 0.00107 0.000635 0.000232 2.30E-06 1.55E-06 6.73E-07 

-0.01163 -0.00785 -0.00354 0.003388 0.0027 0.001459 1.21E-06 1.71E-06 1.25E-06 

0.2606 0.20444 0.114115 -0.08988 -0.07577 -0.04582 -6.68E-05 -5.93E-05 -3.74E-05 

0.00071 0.000557 0.000271 3.07E-05 -4.35E-05 -4.98E-05 6.01E-07 2.83E-07 6.63E-08 

-0.01674 -0.01215 -0.006 0.003208 0.002893 0.001758 -2.98E-06 -8.73E-07 2.55E-07 

0.00069 0.00057 0.000291 8.51E-05 -1.48E-05 -4.18E-05 7.38E-07 3.71E-07 1.01E-07 

-0.00091 -0.0002 0.000114 0.001029 0.000605 0.000218 2.26E-06 1.51E-06 6.51E-07 

0.57188 0.474774 0.283569 -0.05773 -0.05157 -0.03343 0.000249 0.000202 0.000118 

-0.0152 -0.01441 -0.00919 -0.0075 -0.00444 -0.00158 -3.22E-05 -2.25E-05 -1.08E-05 

-0.00292 -0.00146 -0.00039 0.001751 0.001153 0.000495 2.85E-06 2.09E-06 1.01E-06 

-0.02065 -0.01632 -0.00886 0.000745 0.00149 0.00132 -1.28E-05 -7.71E-06 -2.96E-06 

0.36379 0.292377 0.16799 -0.09938 -0.08555 -0.05305 -1.93E-05 -2.25E-05 -1.73E-05 

0.24806 0.193881 0.107741 -0.08802 -0.07399 -0.04458 -7.05E-05 -6.20E-05 -3.88E-05 

-0.02033 -0.0169 -0.00964 -0.00172 -0.00019 0.000562 -1.95E-05 -1.27E-05 -5.51E-06 

-0.00571 -0.00338 -0.00126 0.002499 0.00178 0.000846 2.96E-06 2.42E-06 1.30E-06 

0.05057 0.033262 0.014687 -0.0392 -0.03024 -0.0164 -7.46E-05 -5.85E-05 -3.23E-05 

0.01486 0.00631 0.000468 -0.02467 -0.01808 -0.00918 -5.92E-05 -4.48E-05 -2.37E-05 

0.41536 0.336981 0.195798 -0.09954 -0.08646 -0.05419 1.74E-05 7.14E-06 -2.01E-07 

-0.01969 -0.01673 -0.00975 -0.00285 -0.001 0.000174 -2.23E-05 -1.48E-05 -6.61E-06 

0.00054 0.000543 0.000317 0.00025 8.03E-05 -9.59E-06 1.09E-06 6.11E-07 2.04E-07 

-0.00106 -0.00029 8.13E-05 0.001091 0.00065 0.000239 2.32E-06 1.56E-06 6.84E-07 

0.59858 0.498716 0.299158 -0.01484 -0.01338 -0.00877 0.000389 0.000323 0.000194 

-0.00748 -0.00466 -0.00189 0.00286 0.002112 0.001048 2.71E-06 2.40E-06 1.38E-06 

-0.00052 2.79E-05 0.000193 0.000854 0.00048 0.000159 2.05E-06 1.33E-06 5.56E-07 

-0.00182 -0.00075 -9.62E-05 0.00138 0.000866 0.000345 2.60E-06 1.82E-06 8.33E-07 

0.58405 0.485662 0.290639 -0.04553 -0.0408 -0.02654 0.000292 0.000239 0.000141 

0.00043 0.000503 0.000317 0.000334 0.000132 1.01E-05 1.25E-06 7.24E-07 2.56E-07 

0.03843 0.023957 0.00968 -0.03462 -0.02636 -0.01407 -7.04E-05 -5.47E-05 -2.98E-05 

0.05243 0.034697 0.015466 -0.03988 -0.03082 -0.01675 -7.52E-05 -5.91E-05 -3.27E-05 

0.00067 0.000571 0.000298 0.000113 5.63E-07 -3.70E-05 8.03E-07 4.14E-07 1.19E-07 
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Appendix-IV 

Testing Data  

Testing data is 109 rows by 9 columns data are that are sampled at every 0.23 second from 

genetically tuned LQR  25 second simulation. As the training data, testing data is grouped into 

three class data groups.  

• The first group of testing data is consisting of six states and the first state’s input by taking 

1, 2, 3, 4, 5, 6, and 7 columns of the testing data table. It used to test the approximation 

ability of the fuzzy system that tries to mimic LQR state-input one.  

• The second group of testing data is consisting of six states and the second state’s input by 

taking 1, 2, 3, 4, 5, 6, and 8 columns of the testing data table. It used to test the 

approximation ability of the fuzzy system that tries to mimic LQR state-input two.  

• The third group of testing data is consisting of six states and the third state’s input by taking 

1, 2, 3, 4, 5, 6, and 9 columns of the testing data table. It used to test the approximation 

ability of the fuzzy system that tries to mimic LQR state-input three.  

The testing data shown in the following table is the sample of testing data. 
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States State Inputs 

1 2 3 4 5 6 1 2 3 

0.236344 0.184043 0.10182 -0.0862 -0.07225 -0.04338 -7.38E-05 -6.44E-05 -3.99E-05 

-0.01014 -0.01125 -0.00794 -0.01125 -0.00732 -0.00311 -3.92E-05 -2.81E-05 -1.39E-05 

0.069073 0.047643 0.022562 -0.04569 -0.0358 -0.0198 -7.96E-05 -6.33E-05 -3.55E-05 

-0.01625 -0.01503 -0.00941 -0.00664 -0.00379 -0.00124 -3.05E-05 -2.12E-05 -1.00E-05 

0.000375 0.000483 0.000316 0.000374 0.000157 1.95E-05 1.33E-06 7.77E-07 2.80E-07 

0.000684 0.000574 0.000296 9.83E-05 -7.82E-06 -3.99E-05 7.71E-07 3.92E-07 1.10E-07 

0.117806 0.086415 0.044416 -0.06044 -0.04871 -0.02789 -8.63E-05 -7.06E-05 -4.09E-05 

-0.02068 -0.01634 -0.00887 0.000774 0.001512 0.001332 -1.27E-05 -7.66E-06 -2.94E-06 

0.538795 0.445329 0.264568 -0.07725 -0.06854 -0.04406 0.000169 0.000134 7.61E-05 

0.320927 0.255629 0.145313 -0.0968 -0.08266 -0.05076 -4.29E-05 -4.12E-05 -2.77E-05 

-0.00042 8.02E-05 0.000211 0.000814 0.000451 0.000146 2.00E-06 1.29E-06 5.34E-07 

-0.00044 -0.00468 -0.00496 -0.01706 -0.01191 -0.00565 -4.86E-05 -3.59E-05 -1.84E-05 

0.013711 0.005458 2.90E-05 -0.02416 -0.01766 -0.00893 -5.85E-05 -4.43E-05 -2.34E-05 

-0.00734 -0.00456 -0.00183 0.00284 0.002092 0.001035 2.75E-06 2.42E-06 1.38E-06 

-0.00412 -0.00723 -0.00615 -0.01498 -0.01026 -0.00472 -4.54E-05 -3.32E-05 -1.68E-05 

-0.00396 -0.00215 -0.00069 0.00206 0.001404 0.00063 2.98E-06 2.28E-06 1.14E-06 

-0.01486 -0.01051 -0.00502 0.003432 0.002925 0.001691 -9.95E-07 4.01E-07 7.86E-07 

0.591941 0.492746 0.295255 -0.03368 -0.03026 -0.01975 0.000331 0.000273 0.000162 

-0.00735 -0.00941 -0.00714 -0.01305 -0.00873 -0.00388 -4.22E-05 -3.06E-05 -1.53E-05 

-0.01407 -0.00984 -0.00464 0.003461 0.002896 0.001645 -3.39E-07 8.05E-07 9.43E-07 

-0.0087 -0.00558 -0.00234 0.003069 0.002318 0.001182 2.42E-06 2.30E-06 1.39E-06 

-0.01911 -0.01441 -0.00743 0.002472 0.002552 0.001716 -6.77E-06 -3.43E-06 -8.94E-07 

5.10E-05 0.000332 0.000285 0.000571 0.000286 7.26E-05 1.65E-06 1.02E-06 3.96E-07 

0.00072 0.000551 0.000264 1.10E-05 -5.37E-05 -5.25E-05 5.50E-07 2.51E-07 5.35E-08 

0.104342 0.075598 0.038246 -0.05665 -0.04536 -0.02577 -8.52E-05 -6.92E-05 -3.98E-05 

-0.01955 -0.0167 -0.00978 -0.00311 -0.00118 8.60E-05 -2.29E-05 -1.53E-05 -6.86E-06 

0.049635 0.032531 0.014284 -0.03889 -0.02997 -0.01624 -7.44E-05 -5.83E-05 -3.22E-05 

-0.00164 -0.00064 -5.08E-05 0.001317 0.000818 0.000321 2.55E-06 1.77E-06 8.03E-07 

-0.00267 -0.0013 -0.00032 0.001674 0.001092 0.000462 2.82E-06 2.05E-06 9.76E-07 

0.058963 0.039752 0.018218 -0.04223 -0.03283 -0.01798 -7.71E-05 -6.09E-05 -3.39E-05 

0.256532 0.201006 0.112037 -0.08933 -0.07524 -0.04545 -6.81E-05 -6.03E-05 -3.79E-05 

-0.02044 -0.01595 -0.00855 0.001299 0.00185 0.001469 -1.11E-05 -6.46E-06 -2.34E-06 

-0.01872 -0.01634 -0.00976 -0.00417 -0.00196 -0.0003 -2.53E-05 -1.71E-05 -7.85E-06 

0.180432 0.137528 0.074138 -0.07565 -0.06242 -0.03679 -8.42E-05 -7.11E-05 -4.27E-05 

-0.01327 -0.00918 -0.00427 0.003464 0.002849 0.001591 2.42E-07 1.15E-06 1.07E-06 

0.079992 0.056232 0.027336 -0.04926 -0.03889 -0.02171 -8.19E-05 -6.56E-05 -3.71E-05 

-0.0023 -0.00106 -0.00022 0.001551 0.000996 0.000412 2.74E-06 1.96E-06 9.18E-07 

0.041063 0.025953 0.01074 -0.03567 -0.02724 -0.01459 -7.14E-05 -5.56E-05 -3.04E-05 

0.000282 0.000443 0.00031 0.000435 0.000196 3.52E-05 1.43E-06 8.54E-07 3.16E-07 
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Appendix-V 

Output Membership Function 

There are a total of 729 output membership functions for each fuzzy systems that are generated 

from ANFIS. The output membership functions are linear function with the six states as input 

variables and seven parameters designated as pn, n= 0,2,3…6. The six parameters are the 

coefficients to the six variables and the last parameter is a constant. 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 + 𝑝4�̇�1 + 𝑝5�̇�2 + 𝑝6�̇�3 + 𝑝0 

A. Output Membership Function for the Fuzzy System One 

Output membership function for the fuzzy system one that mimics LQR state-input one has a 

universe of discourse [ −8.6700 × 10−5     4.3232 × 10−4].  The parameters of the sample output 

function for the fuzzy system one is shown below. 
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Output 

MF 

Function 

type 
Output membership function parameters [p1, p2, p3, p4, p5, p6, p0] 

'out1mf1' 'linear' 
[-1.79577228200378e-06,-1.37607297536001e-06,-7.46583126808716e-07,7.30500494655699e-

07,6.05256990703541e-07,3.58419401594744e-07,-9.31382001653686e-06] 

'out1mf2' 'linear' 
[-2.97630056402817e-06,-2.25750573726622e-06,-1.20972277984421e-06,1.28462340206517e-

06,1.05647519715323e-06,6.20024673861661e-07,-1.75616749229760e-05] 

'out1mf3' 'linear' 
[-3.83269344565281e-07,-2.90419785194646e-07,-1.55455555467827e-07,1.71841030318485e-

07,1.40861193426221e-07,8.23934128741963e-08,-2.67073982602828e-06] 

'out1mf4' 'linear' 
[-2.66513340819117e-06,-2.02140411558853e-06,-1.08314219339780e-06,1.15088197608470e-

06,9.46435896131153e-07,5.55409515433729e-07,-1.57462690578899e-05] 

'out1mf5' 'linear' 
[-6.28129763175224e-06,-4.73268782731637e-06,-2.51465522129433e-06,2.84085184866772e-

06,2.32545948227108e-06,1.35710243139092e-06,-4.10241185245672e-05] 

'out1mf6' 'linear' 
[-6.15395530691737e-07,-5.20057944494250e-07,-3.07178752733244e-07,2.83922481868017e-

07,2.48944569292109e-07,1.56823942952791e-07,-7.41838197258486e-06] 

'out1mf7' 'linear' 
[-7.35332579521020e-08,-5.58456918023714e-08,-2.98814435010901e-08,3.69555625944390e-

08,3.01547931759958e-08,1.75374840927598e-08,-7.66995957010629e-07] 

'out1mf8' 'linear' 
[-1.90283838267908e-08,-6.55253550217398e-08,-6.06188147403200e-08,-1.68130325626391e-

08,4.77846029691913e-09,1.45975063349059e-08,-1.91995971930155e-06] 

'out1mf9' 'linear' 
[4.31249416446470e-06,3.82148173043008e-06,2.38086197105028e-06,5.37661050319484e-

07,1.64592777383247e-07,-8.98838014312723e-08,-5.45930325976848e-05] 

'out1mf10

' 
'linear' 

[-1.75431501002420e-06,-1.33016017991267e-06,-7.12513296256484e-07,7.58781413764907e-

07,6.23781290270649e-07,3.65925832181255e-07,-1.04242776599863e-05] 

'out1mf11

' 
'linear' 

[-4.52300182663266e-06,-3.40962113402273e-06,-1.81297003712335e-06,2.03654296341018e-

06,1.66776211039621e-06,9.73802122847798e-07,-2.91733402645938e-05] 

'out1mf12

' 
'linear' 

[-4.86322491710565e-07,-3.90686546206889e-07,-2.20845566858052e-07,2.47161890846984e-

07,2.08308413144529e-07,1.25998191444189e-07,-5.41649831604152e-06] 

'out1mf13

' 
'linear' 

[-4.08055361921075e-06,-3.07196258524612e-06,-1.63106048509597e-06,1.86049574751210e-

06,1.52118556015822e-06,8.86714453456366e-07,-2.73450682503220e-05] 

'out1mf14

' 
'linear' 

[-4.89224762570292e-06,-3.58634834064163e-06,-1.88302805026223e-06,3.56306127296450e-

06,2.77458031014138e-06,1.54341278518996e-06,-0.000130115837911830] 

'out1mf15

' 
'linear' 

[-6.67417507756270e-06,-5.15084445390229e-06,-2.69814323515065e-06,6.04005897903741e-

06,4.96303143041149e-06,2.90613314167606e-06,-0.000114097105153992] 

'out1mf16

' 
'linear' 

[-3.85905452666462e-08,-6.77562211363110e-08,-5.62227496440663e-08,3.20837748574436e-

09,1.58843440781772e-08,1.80306667458292e-08,-7.89362021931605e-08] 

'out1mf17

' 
'linear' 

[-8.23565359747066e-06,-6.28933152229412e-06,-3.25097655782952e-06,6.04743727069776e-

06,5.02374497213724e-06,2.96103966552120e-06,-9.98033871354249e-05] 

'out1mf18

' 
'linear' 

[7.32409569169192e-05,5.32006050251410e-05,2.71026072417423e-05,-2.03125835823408e-05,-

1.69174653411870e-05,-9.96214367954881e-06,-0.000251659458113302] 

'out1mf19

' 
'linear' 

[-1.88377933866908e-08,-1.51015665846355e-08,-8.42103883477618e-09,1.04368006005472e-

08,8.73906278983895e-09,5.20058933165926e-09,-3.43979245147719e-07] 

'out1mf20

' 
'linear' 

[2.30330242453491e-07,7.78074870302461e-08,-9.57791172439493e-09,-2.84761284800575e-07,-

1.94580966770738e-07,-8.90915252465776e-08,5.50421780283155e-06] 

'out1mf21

' 
'linear' 

[4.07595105350026e-06,3.66452164178472e-06,2.32636361998169e-06,5.50029556423375e-

07,1.88522499360839e-07, -7.39092346769004e-08,-4.64315374741693e-05] 
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B. Output Membership Function for the Fuzzy System Two 

Output membership function for the fuzzy system two that mimics LQR state-input two has a 

universe of discourse [−7.1900 × 10−5   3.6062 × 10−4]. The parameters of the sample output 

function for fuzzy system two is shown below.  

 

Output 

MF 

Function 

type 
Output membership function parameters [p1, p2, p3, p4, p5, p6, p0] 

'out1mf1' 'linear' 
[-8.54986442554238e-07,-6.54821261923755e-07,-3.55013939427238e-07,3.48907279149972e-

07,2.89050993826592e-07,1.71132852714589e-07,-4.43301691788761e-06] 

'out1mf2' 'linear' 
[-1.49074776535082e-06,-1.13299902306712e-06,-6.08461994885012e-07,6.33300023834855e-

07,5.22040507333179e-07,3.07161533632306e-07,-8.25195445912306e-06] 

'out1mf3' 'linear' 
[-1.32207832591941e-07,-1.02906214427156e-07,-5.71734133797747e-08,4.58157404052383e-

08,3.82853230487155e-08,2.29835060410312e-08,-4.91652734768608e-07] 

'out1mf4' 'linear' 
[-1.41971066605774e-06,-1.08312959248873e-06,-5.84444993729193e-07,5.90944292700445e-

07,4.88233562289571e-07,2.88085136488529e-07,-7.63019054106326e-06] 

'out1mf5' 'linear' 
[-1.80926444352764e-06,-1.44320282672115e-06,-8.23928485457772e-07,5.18507539713912e-

07,4.45231793198821e-07,2.75746682711364e-07,-5.65550514151870e-06] 

'out1mf6' 'linear' 
[-4.10551521428720e-07,-1.55823301537804e-07,7.04596445742204e-09,5.86788003717399e-

07,4.21117268012070e-07,2.06448536893745e-07,-1.84987020287644e-05] 

'out1mf7' 'linear' 
[-2.63896248277089e-08,-1.89053646522499e-08,-9.72506709381578e-09,1.13337089214405e-

08,8.75385303466948e-09,4.81496091382332e-09,-1.00545157200615e-07] 

'out1mf8' 'linear' 
[-1.95801210783441e-07,-5.18307365254681e-08,1.52650253226217e-08,1.09454249589727e-

07,4.89458968784174e-08,4.05975564388689e-09,2.66950158260542e-06] 

'out1mf9' 'linear' 
[1.84260699079531e-07,4.56060904756030e-07,3.85903346798542e-07,3.69484894914461e-

07,1.50377948894314e-07,-2.70363677741137e-09,1.04364086611826e-06] 

'out1mf10' 'linear' 
[-1.13515269607815e-06,-8.63295384067273e-07,-4.63954141307407e-07,4.80866785151693e-

07,3.96584137416736e-07,2.33477499597183e-07,-6.25392160813977e-06] 

'out1mf11' 'linear' 
[-1.59024472962842e-06,-1.33284032165253e-06,-7.99130021806280e-07,2.25514094980510e-

07,2.26897941134503e-07,1.62808420187426e-07,3.14851851618700e-06] 

'out1mf12' 'linear' 
[2.35041931416424e-08,1.23849250638240e-07,1.25335511313402e-07,2.12388301306291e-

07,1.32422971269439e-07,5.01544362993180e-08,-1.01210493848361e-05] 

'out1mf13' 'linear' 
[-1.53315392225975e-06,-1.20797783050968e-06,-6.79196205679998e-07,4.99516027930402e-

07,4.22626759062150e-07,2.57047696420541e-07,-6.21475759413375e-06] 

'out1mf14' 'linear' 
[-1.04693132641894e-05,-6.46968237676541e-06,-2.51539021246300e-06,6.76825364020579e-

06,5.19391825456039e-06,2.76259259519051e-06,-9.26697709589025e-05] 

'out1mf15' 'linear' 
[-5.91250216870833e-05,-4.47810652816690e-05,-2.39122992146720e-05,2.04913140929927e-

05,1.72250020546353e-05,1.03137598996311e-05,-2.91771353392578e-05] 

'out1mf16' 'linear' 
[-1.64417913665686e-07,-7.64954260654375e-08,-1.82718591357090e-08,8.33639250820586e-

08,4.95427853681483e-08,1.73351001950275e-08,-1.38032928465018e-06] 

'out1mf17' 'linear' 
[-2.19286015270386e-05,-1.33836231146970e-05,-5.57804412743284e-06,8.55580476997350e-

06,5.92541544956401e-06,2.76756527252522e-06,-5.34445164127437e-05] 
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C. Output Membership Function for the Fuzzy System Three 

Output membership function for the fuzzy system three that mimics LQR state-input three has a 

universe of discourse [ −4.2700 × 10−5   2.1724 × 10−4]. The parameters of the sample output 

function for fuzzy system-three is shown below.  

Output 

MF 

Function 

type 
Output membership function parameters [p1, p2, p3, p4, p5, p6, p0] 

'out1mf1' 'linear' 
[-8.54722017281475e-07,-6.54374968754450e-07,-3.54590489167889e-07,3.49512764842023e-

07,2.89511784207985e-07,1.71369190396236e-07,-4.43384820087416e-06] 

'out1mf2' 'linear' 
[-1.20722747570407e-06,-9.24940553448515e-07,-5.02001565026321e-07,4.91075323941496e-

07,4.06379915626363e-07,2.40378180279670e-07,-6.51860310897808e-06] 

'out1mf3' 'linear' 
[-4.65673427878593e-08,-3.28748545812366e-08,-1.61897884789352e-08,2.61467808898142e-

08,2.05601102880062e-08,1.14340087079874e-08,-4.91431553247631e-07] 

'out1mf4' 'linear' 
[-9.48649279659152e-07,-7.25665100395949e-07,-3.93134282259661e-07,3.90559081870118e-

07,3.22683303097055e-07,1.90527684807714e-07,-5.32047533448335e-06] 

'out1mf5' 'linear' 
[-1.83786899944884e-06,-1.08506312310619e-06,-3.92107396925090e-07,1.79748496873413e-

06,1.35673449337268e-06,7.14074155816130e-07,-5.15191007638007e-05] 

'out1mf6' 'linear' 
[-7.98246559101326e-07,-5.59038614123042e-07,-2.71081403408043e-07,4.46338695096734e-

07,3.51942027573171e-07,1.95893095817133e-07,-8.02122833622935e-06] 

'out1mf7' 'linear' 
[-3.54209470385056e-08,-2.47159784052091e-08,-1.20333004614719e-08,1.97559380622898e-

08,1.54111598877642e-08,8.48940497081933e-09,-3.36358377043087e-07] 

'out1mf8' 'linear' 
[-7.35100605622243e-07,-4.52412266756782e-07,-1.86481991776805e-07,4.15836923025409e-

07,3.03581785083820e-07,1.52592995875415e-07,-3.78423949429705e-06] 

'out1mf9' 'linear' 
[2.92180690976363e-07,3.81134045772327e-07,2.74917272587476e-07,5.94171991255591e-08,-

2.77702091638404e-08,-6.26081365678732e-08,2.29738986892185e-06] 

'out1mf10' 'linear' 
[-5.52703679069876e-07,-4.25595175929000e-07,-2.32408856693884e-07,2.18569817805613e-

07,1.81475193162832e-07,1.07789982902956e-07,-2.86347328104252e-06] 

'out1mf11' 'linear' 
[-5.41901925416274e-07,-2.15613187038754e-07,4.26608938295031e-09,8.68179568498194e-

07,6.37044842973684e-07,3.21808346057737e-07,-2.89295154008225e-05] 

'out1mf12' 'linear' 
[-4.47347874881290e-07,-3.11409260786839e-07,-1.49965209061416e-07,2.57214064161944e-

07,2.02020281880038e-07,1.11960955989169e-07,-5.25436201546321e-06] 

'out1mf13' 'linear' 
[-1.09640349254376e-06,-6.96920687561903e-07,-2.87980489816362e-07,8.97795092185649e-

07,6.90172990031507e-07,3.71543289299980e-07,-2.06397416728185e-05] 

'out1mf14' 'linear' 
[-6.00222843216729e-05,-4.65927532348603e-05,-2.54596572492136e-05,2.11670519783189e-

05,1.81524043505549e-05,1.11023164297692e-05,-2.91161117923783e-05] 

'out1mf15' 'linear' 
[1.45368921093379e-05,1.09975759282210e-05,5.78653810434031e-06,-6.31760194753668e-06,-

5.31005581303616e-06,-3.16854913531716e-06,-2.20386752752547e-05] 

'out1mf16' 'linear' 
[-3.55478188204207e-07,-2.45196469205083e-07,-1.16923456094240e-07,1.96869651735706e-

07,1.53787855457970e-07,8.45985198942370e-08,-3.72706362245352e-06] 

'out1mf17' 'linear' 
[-9.17460280086895e-06,-5.92975524257284e-06,-2.61382004299757e-06,3.96954597175104e-

06,2.95240054716230e-06,1.51003779693430e-06,-7.47842714489248e-05] 

 


